• Title/Summary/Keyword: 침수면적

Search Result 271, Processing Time 0.027 seconds

Determination of Volume Porosity and Permeability of Drainage Layer in Rainwater Drainage System Using 3-D Numerical Method (3차원 수치해석기법을 이용한 우수배수시스템 배수층의 체적공극과 투수도 결정)

  • Yeom, Seong Il;Park, Sung Won;Ahn, Jungkyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.449-455
    • /
    • 2019
  • The increase in impermeable pavement from recent urbanization has resulted in an increase in surface runoff. The surface runoff has also increased the burden of the existing drainage system. This drainage system has structural limitations in that the catchment area is reduced by the waste particles transported with the surface runoff. In addition, the efficiency of the drainage system is decreased. To overcome these limitations, a new type of drainage system with a drainage layer was developed and applied. In this study, various volume porosity and permeability of the lower drainage layer were simulated using ANSYS CFX, which is a three dimensional computational fluid dynamics program. The results showed that the outlet velocity of the 35% volume porosity was faster than that of the 20% and 50% cases, and there was no relationship between the volume porosity and drainage performance. The permeability of the drainage layer can be determined from the particle size of the material, and a simulation of five conditions showed that 2 mm sand grains are most suitable for workability and usability. This study suggests appropriate values of the volume porosity and particle size of the drainage layer. This consideration can be advantageous for reducing and preventing flood damage.

Management Strategies and the Relationship between Argyroneta aquatica and Environmental Factors in Aquatic Ecosystem (천연기념물 물거미(Argyroneta aquatica)와 수생태 환경 요인과의 관계와 관리 방안)

  • Jeong, Heon Mo;Kim, Hae Ran;Cho, Kyu Tae;Lee, Seungyeon;You, Young Han;Hong, Seungbum
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.136-142
    • /
    • 2019
  • Water spider(Argyroneta aquatica) inhabits only a small size wetland in Eundae-ri, Yeoncheon-gun. In this study to investigate environmental factors influencing on population of A. aquatica, we analyzed the relationship between density of A. aquatica and various physicochemical and biological factors. Density of A. aquatica increased with small habitat area and high $NH_4$ and electric conductivity. The relationship between density of A. aquatica and prey or predator was low but the water spider decreased with density of Pomacea canaliculata. And density of A. aquatica was not related to the coverage of emergent plant. However density of A. aquatica decreased as the increase of floating plant and increased as the increase of submerged plant. These results indicated that aquatic plants are important in the habitat environment of A. aquatica. Therefore we suggest necessity of management strategies for the invasive species, P. canaliculata which is a notorious predator of aquatic plants.

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

Application of LID to Reduce Storm Runoff according to the RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 우수 유출량 저감을 위한 저영향개발 시설의 적용 방안)

  • Kim, Min ji;Kim, Ji Eun;Park, Kyung Woon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Due to climate change, increased heavy rainfalls result in flood damage every year. To investigate the storm-runoff reduction effects of Low Impact Development (LID), this study performed runoff analyses using the U.S. Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) for past and future representative storm events of the Yongdu Rainwater Pumping Station basin. As a result, the infiltration loss for representative future rainfalls increased by 3.17 %, and the surface runoff and peak runoff rate increased significantly by 32.50 %, and 128.77 %, respectively. To reduce the increased surface runoff and peak runoff rates, this study investigated the applicability of LID approaches, including a permeable pavement, green roof, and rain garden, by adjusting the LID parameters and the ratio of installation area. We identified the ranges of LID parameters that decreased peak runoff rate and surface runoff, and increased infiltration. In addition, when the application ratio of permeable pavement, green roof, and rain garden was 2:1:3, best performance was attained, leading to a reduction of peak runoff of 26.85 %, infiltration loss 12.01 %, surface runoff 15.11 %, and storage 509.47 %. Based on analyzing the effect of storm runoff reductions for various return periods, it was found that as the return period increased, the proportion of peak runoff and surface runoff increased and the proportion of infiltration loss and storage decreased.

An Experimental Study for Clogging Factors Estimation of Grate Inlets in Urban Area (도시지역에서 빗물받이의 막힘계수 산정에 관한 실험적 연구)

  • Kim, Jung Soo;Kwon, In Sup;Yoon, Sei Eui;Lee, Jong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.179-186
    • /
    • 2006
  • Effective interception area of street grate inlets was decreased by clogging with trash, debris, and sand. It also decreased the interception capability of grate inlets and increased the inundation area in street. Therefore, it is necessary to analyze the clogging characteristics and interception capability change by clogging for appropriate design and management of grate inlets. Hydraulic experimental apparatus which can be changed the gutter transverse slopes, longitudinal slopes of street and clogging condition of grate inlet ($40{\times}50cm$) was installed for this study. 81 total experiments were conducted with 8 different clogging condition. The interception capacities of grate inlets clogged curb direction are smaller than those of clogged flow direction. As the longitudinal slopes of street increase, the interception capacity of grate inlet decreases due to splash-over phenomena. This is also observed at grate inlets which has no clogging condition. In general, 50% of clogging factor was selected in design of grate inlet in foreign country. The clogging factor for same clogging condition are suggested 0.25~0.65 in domestic urban area.

A Study on the Formation of River Sandbar and Management of River Forestation & Aggradation - Focusing on the Jang-Hang Wetland on the Han River - (하천의 사주 형성과 하도 수림화 및 육역화 관리방안에 관한 연구 - 한강 장항습지를 중심으로 -)

  • Hong Kyu Ahn;Dong Jin Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.43-54
    • /
    • 2024
  • Recently, most of the rivers in Korea are experiencing various problems in dimension and river environment, such as expansion of stable area where disturbance does not occur during flood, increase of excessive trees in river channel, fixation of river channel, reduction of sand bar. When the soil supplied by the flood is deposited in the river, the plant is settled in the formed terrain, and when another disturbance of the scale that does not erode there occurs after the plant is settled, the river gradually grows and the vegetation zone is formed there. In particular, in terms of river management, river forestation and river aggradation are objects that must be managed because they are disadvantageous in terms of flood control by lowering the flow rate and raising the water level. Therefore, in this study, the area of vegetation occupied by the year of sandbar was analyzed in the process of river aggradation in Jang-Hang wetland. In addition, the correlation between the growth of Jang-Hang wetland was analyzed through the analysis of the flow rate and the flooding frequency that directly affect the growth of Jang-Hang wetland. Through this, the management plan of Jang-Hang wetland, which is registered in Ramsar Wetland but has been river forestation and is undergoing river aggradation, was proposed.

An Approach to Enhance the Unfair Area in the Rural Landscape (농촌 조건불리지역의 경관개선을 위한 접근)

  • Jang, Gab-Sue;Park, In-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.2
    • /
    • pp.60-68
    • /
    • 2008
  • Three land-use limitations including water hazard, soil erosion and fallow potential were evaluated to define an unfair area. Landscape indices in the unfair areas, defined by evaluations before and after landscape enhancement, were computed by Fragstats v3.3 and compared in order to propose a landscape enhancement plan. The results are as follows: First, as a result of the land evaluation, 388.56ha was analyzed for the 1st class(S1), 623.25ha for the 2nd class(S2), 138.08ha(S3s: 82.47ha, S3e: 51.88ha) for the 3rd class(S3), 230.44ha(N1w: 194.91ha, N1e: 23.09ha, N1es: 13.94ha) for the 4th class(N1), and 67.91ha(N2w: 60. 89ha, N2es: 7.02ha) for the 5th class(N2). The classes under the 3rd class(including the 3rd class) were determined as an unfair area, and proposed landscape enhancement for them. Second, it was proposed that unfair areas with potential water hazards(N1 w, N2w) be restored as a wetland and buffer zone. At this point, the farmers owning these fields could be compensated using the direct payment for landscape conservation(DPLC). Areas witha relatively lower slope(S3e) or a steep slope(N1e) containing soil erodibility potential were proposed to be restored as a sod-culture-applied field and substitute vegetation or potentially natural vegetation, respectively. The unfair areas having fallow potential(S3s, N1es, N2es) were proposed to apply special use crops for the S3s fields, native plants for the N1es fields, and intended fallow for the N2es fields. Third, after landscape enhancement, theforest had higher values in the indices of NP, PLAND, LSI, IJI, and TCA, while paddy and upland had lower values in most indices except NP and LSI. The forest patches increased and were more plentiful with their restoration and had much greater possibility to join with nearby patches. With continued restoration, forest patches will have a large core area and small number of patches due to the conglomeration of patches, which positively influences the species of diversity in the forest patches.

Vegetation Strucure of Haepyeong Wetland in Nakdong River (낙동강 해평 습지의 식생 구조)

  • Lee, Pal-Hong;Kim, Cheol-Soo;Kim, Tae-Geun;Oh, Kyung-hwan
    • Journal of Wetlands Research
    • /
    • v.7 no.3
    • /
    • pp.87-95
    • /
    • 2005
  • Vegetation structure of the vascular plants was investigated from March 2003 to October 2003 in Haepyeong wetland, Gumi-si, Gyeongsangbuk-do, Korea. Actual vegetation of Haepyeong wetland largely can be classified by floristic composition and physiognomy into 18 communities; Xanthium strumarium-Digitaria sanguinalis, Humulus japonicus, Persicaria perfoliata-Humulus japonicus, Phragmites japonica-Miscanthus sacchariflorus, Persicaria hydropiper-Phragmites communis, Persicaria hydropiper, Phragmites japonica-Persicaria hydropiper, Miscanthus sacchariflorus- Phragmites japonica, Persicaria hydropiper-Phragmites japonica, Miscanthus sacchariflorus-Salix glandulosa, Salix nipponica-Salix glandulosa, Salix nipponica-Salix koreensis, Salix nipponica, Miscanthus sacchariflorus-Salix nipponica, Phalaris arundinacea-Salix nipponica, Salix glandulosa-Salix nipponica, Trapa japonica, and Ceratophyllum demersum-Trapa japonica. Among them, the area of the Salix nipponica-Salix koreensis community was the largest as 122.2ha(9.23%). The dominant vegetation type was Miscanthus sacchariflorus-Persicaria hydropiper community based on phytosociological method, and it was was classified into three subcommunities; Salix glandulosa-Salix nipponica subcommunity, Digitaria sanguinalis subcommunity, and Cyperus amuricus subcommunity. Differential species of Salix glandulosa-Salix nipponica subcommunity were Salix nipponica, S. glandulosa, S. koreensis, Scirpus radicans, Persicaria maackiana, and Achyranthes japonica; differential species of Digitaria sanguinalis subcommunity were D. sanguinalis, Setaria viridis, Ambrosia artemisiifolia var. elatior, and Cyperus orthostachyus; differential species of Xanthium strumarium subcommunity were X. strumarium, Acalypha australis, Erigeron canadensis, Echinochloa crus-galli, and Vicia tetrasperma. Zonation of vascular hydrophytes and hygrophytes was as followers: Salix glandulosa, S. koreensis, S. nipponica were distributed in the region of land which water table is low, and Persicaria maackiana, Persicaria hydropiper, Scirpus radicans were distributed in the understory. And emergent plants such as Phragmites communis and Scirpus karuizawensis, floating-leaved plant such as Trapa japonica, submersed plant such as Ceratophyllum demersum, and free floating plant such as Spirodela polyrhiza formed the zonation from shoreline to water. The specified wild plants designated by the Korean Association for Conservation of Nature, Ministry of Forest, and Ministry of Environment were not distributed in the study area. It was expected that Haepyeong Wetland worthy of conservation contributed purifying water pollution, giving habitats of many lifes, and providing beautiful scenes of the river.

  • PDF

Site Selection for Geologic Records of Extreme Climate Events based on Environmental Change and Topographic Analyses using Paleo Map for Myeongsanimni Coast, South Korea (고지도 기반 환경변화연구 및 지형분석을 통한 명사십리 해안의 제4기 연안지대 이상기후 퇴적기록 적지선정)

  • Kim, Jieun;Yu, Jaehyung;Yang, Dongyoon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.589-599
    • /
    • 2014
  • This study selected optimal sites in Myeongsasimni located in west coast of Korea for stratigraphic research containing extreme climate event during quaternary period by spatio-temporal analyses of changes in sedimentary environment and land use employing 1918 topographic map, 2000 digital terrain map, 1976 and 2012 air photographies. The study area shows no significant changes in topographic characteristics that hilly areas with relatively large variations in elevation are distributed over north and south part of the study area, and sand dues are developed along the coast line. Moreover, flat low lying areas are located at the back side of the sand dues. The movement of surface run off and sediment loads shows two major trends of inland direction flow from back sides of sand dunes and outland direction flow from high terrains inland, and the two flows merge into the stream located in the center of the study area. Two sink with individual area of $0.2km^2$ are observed in Yongjeong-ri and Jaryong-ri which are located in south central part and south part of the study area, respectively. In addition, sea level change simulation reveals that $3.4km^2$ and $3.64km^2$ are inundated with 3 m of sea level rise in 1918 and 2000, respectively, and it would contribute to chase sea level change records preserved in stratigraphy. The inundated areas overlaps well with sink areas where it indicates the low lying areas located in south cental and south part of the study area are identical for sediment accumulation. The areas with minimal human impact on sediment records over last 100 years are $3.51km^2$ distributed over central and south part of the study area with the land use changes of mud and rice field in 1918 to rice field in 2012. The candidate sites of $0.15km^2$ in central part and $0.09km^2$ in south part are identified for preferable locations of geologic record of extreme climate events during quaternary period based on the overlay analysis of optimal sedimentary environment and land use changes.

Classifications of Ecological Districts for Estuarine Ecosystem Restoration; Examples of Goseong Bay Estuaries, South sea, Korea (하구 생태 복원을 위한 생태구역 구분; 남해 고성만 고성천 인근 하구의 예)

  • An, Soon-Mo;Lee, Sang-Yong;Choi, Jae-Ung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.70-80
    • /
    • 2011
  • Estuarine ecosystem responds sensitively to natural and anthropogenic perturbations. lt is necessary to identify the direction of the change when the perturbation occurs as well as to understand the structure and functioning of estuarine ecosystem for a proper management of the area. In this study, the estuarine habitats were classified into different ecological districts so as to the switch from one district to another district could be related to the environmental change due to the perturbations. Total 16 ecological districts was defined according to the presence of barrage, salinity and vegetation characteristics. The defined ecological districts were applied to small estuaries in Goseong bay, south sea of Korea (Baedun, Guman, Maam, Goseong) to distinguish different regions which might have characteristic bottom topography, inclinations of river bottom, sediment characteristics, salinity structure and area of vegetation. Total 7 out of 16 ecological district was identified in this region; NFB (natural, fresh, bare), NHB (natural, high salinity, bare), NLV (natural, low salinity, vegetated) in natural (without barrage) estuaries and CFB (closed, fresh, bare), CFV( closed, fresh vegetated), CLV (closed, low salinity, vegetated), CHB (closed, high salinity, bare) in closed (with barrage) estuary. A comparison of environmental factors and biota between CHB and CLV demonstrated the effect of barrage on estuarine ecosystem. The height and sediment characteristics of CHB and CLV were similar but the average salinity was lower in CLV than in CHB due to the barrage, which produced favorable condition for the Phragmites australis in CLV. Information regarding the ecological districts in various sizes and location could be useful for predicting the ecosystem change due to natural and anthropogenic perturbations and for preparing management actions.