• Title/Summary/Keyword: 친환경 인증시스템

Search Result 40, Processing Time 0.034 seconds

Daylighting Performance of Office Space Applied with Electrochromic Façade System (전기변색 외피시스템 적용 업무공간의 채광 성능 분석)

  • Kim, Jae-Hyang;Han, Seung-Hoon
    • Land and Housing Review
    • /
    • v.13 no.1
    • /
    • pp.131-140
    • /
    • 2022
  • A smart window is a new building material that can realize energy savings in a building. Smart windows can freely adjust Visible Light Transmittance (VLT) and solar gain coefficient (g-value) according to the situation. Smart windows include such technologies as Electrochromic (EC), Suspended Particle Device (SPD), and Polymer Dispersed Liquid Crystal (PDLC). Recent research on building energy savings through the VLT and g-value control functions of smart windows is being actively conducted and meaningful results are being drawn. However, since most of the research is focused on energy savings, research on the indoor environment is somewhat lacking. A building is a space where people live and the comfort of life should be prioritized before energy savings. Therefore, in this study, analysis on the daylight performance of an office space was carried out. Through green building standards such as LEED, BREEAM, CASBEE, and G-SEED, the daylight performance was reviewed according to VLT value changes of the smart window. In addition, a study was conducted on the VLT range of the electrochromic façade that can maintain a comfortable indoor environment. The smart window used electrochromic control with a wide range of VLT. The study showed that the minimum VLT of a smart window that can satisfy G-SEED is 25% or more. In addition, it was found that the VLT change of the electrochromic smart window did not significantly affect the uniformity of the room. When the LEED standard was applied, the minimum VLT value of the electrochromic smart window that must be maintained according to each orientation of the building was derived.

자랑스런안전인 - 안전은 '근성'과 '끈기'로 완성된다 - (주)화승인더스트리 나창식 차장

  • Yeon, Seul-Gi
    • The Safety technology
    • /
    • no.168
    • /
    • pp.18-19
    • /
    • 2011
  • 1969년 한국 최초의 Chemical Shoes 공장을 설립한 (주}화승인더스트리. 그로부터 20여년 후인 1990년 화승은 또 한 번의 도전을 시작했다. BOPP 필름사업으로 업종을 변경한 것. 업계는 무모한 도전이라며 우려의 시선을 보냈다. 하지만 (주)화승인더스트리는 그간 축적된 경험과 기술을 기반으로 보란 듯이 승승장구를 거듭했다. 1993년 국내 최초로 통기성 필름사업을 시작한 이래 1995년 신규라인 확장, 1997년 BOPET 필름사업 진출 등 거침없는 성장을 이어간 것이다. 그리고 그 결과, 이제는 누구나 인정하는 국내 최고의 종합필름기업으로 우뚝 올라섰다. 이같은 (주)화승인더스트리의 성공 배경은 무엇일까? 그것은 안전과 환경을 중시하는 이곳의 경영방침에서 찾을 수 있다. 이곳은 다양한 안전활동을 지속적으로 펼쳐나가는 가운데 환경경영시스템인 ISO14001 인증을 획득하는 등 우수안전기업, 친환경기업을 향한 노력을 멈추지 않았다. 기업 스스로가 근로자들의 안전 그리고 지역의 환경을 우선시하면서 관련 업계와 소비자들에게 신뢰할 수 있는 기업이라는 인식을 심어줄 수 있었던 것이다. 빈틈없는 안전관리로 (주)화승인더스트리의 지속적인 발전을 이끌고 있는 이곳의 안전관리자 나창식 차장을 만나봤다.

  • PDF

Accelerated Life Test of In-Wheel Motor for Mobile Robot (이동로봇용 In-Wheel Motor의 가속수명시험)

  • Kim, Young-Ki;Kim, Sang-Hoon;Kim, Hag-Wone;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.498-505
    • /
    • 2010
  • In-Wheel System is a high-efficiency system to supply a new concept of platform which raises the efficiency of motor drive system and applies it to an environment-friendly automobile by installing a highly efficient electric motor directly to wheels and removing factors of power train. The proliferation of these systems is directly related to the safety of our lives, so check the reliability of the part in the development phase and should be certified. Reliability is the ability of a system or component to perform its required functions under stated conditions for a specified period of time. This paper presents to the verification methods for durability, one of reliability assessments of the Motor, the study calculated acceleration and deceleration torque and the effective torque from driving conditions of In-Wheel Motor, and based on this, it reduced the test time and suggested the verification methods of In-Wheel Motor reliability through the accelerated life test.

Blockchain-based Sales and Purchase Record Management Systems for Agricultural Products (블록체인을 활용한 농산물 판매 및 소비이력 시스템에 관한 연구)

  • Na, Wonshik
    • Journal of Industrial Convergence
    • /
    • v.20 no.3
    • /
    • pp.41-46
    • /
    • 2022
  • This paper proposes a consumer-tailored solution to prevent the forgery and falsification of data by incorporating blockchain technology in the online and offline distribution of agricultural produce. The solution provides customized services to consumers based on an analysis of the data generated from the sales, distribution, and consumption of quality of the produce. It can also ensure the safety and credibility of the produce, and allow producers to identify consumption intent and the flow of distribution. Producers will be able to determine the flow of produce based on the data collected and thus tailor promotional efforts. This is expected to be the fourth industrial revolution in the agricultural produce distribution sector. Utilizing blockchain and big data technology to create integrated record management systems that combine multiple solutions will shape future technology trends. In addition, if eco-friendly certification is acknowledged as a valuable service and can be incorporated into the distribution process, this solution could become a one-stop distribution solution for agricultural produce.

One-stop Platform for Verification of ICT-based environmental monitoring sensor data (ICT 기반 환경모니터링 센서 데이터 검증을 위한 원스탑 플랫폼)

  • Chae, Minah;Cho, Jae Hyuk
    • Journal of Platform Technology
    • /
    • v.9 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • Existing environmental measuring devices mainly focus on electromagnetic wave and eco-friendly product certification and durability test, and sensor reliability verification and verification of measurement data are conducted mainly through sensor performance evaluation through type approval and registration, acceptance test, initial calibration, and periodic test. This platform has established an ICT-based environmental monitoring sensor reliability verification system that supports not only performance evaluation for each target sensor, but also a verification system for sensor data reliability. A sensor board to collect sensor data for environmental information was produced, and a sensor and data reliability evaluation and verification service system was standardized. In addition, to evaluate and verify the reliability of sensor data based on ICT, a sensor data platform monitoring prototype using LoRa communication was produced, and the test was conducted in smart cities. To analyze the data received through the system, an optimization algorithm was developed using machine learning. Through this, a sensor big data analysis system is established for reliability verification, and the foundation for an integrated evaluation and verification system is provide.

A Case of IT System Development for Engineering Education of Low-carbon & Green-growth (저탄소 녹색성장 공학 교육을 위한 IT 시스템 개발 사례)

  • Kang, Minshik
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.3 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • Recently, the most important paradigm is to prepare future and to protect the environment through the carbon savings occurs in everyday life and whole industry. For the success of this new paradigm, Korean government encourages the green certification and the development of green technologies and green growth as one of the important policies are adopted and implemented. Public agencies and companies establish the plans about the carbon savings and implement a lot of research has moved on using IT technology. There are some attempts in Korea to use as an electronic document instead of the use of paper document using these green IT and mobile devices. In this paper, the waiting sequence system using mobile phone is proposed as an example of practical engineering education for 'Low carbon, Green growth'.

  • PDF

Effects of applied biochar derived from spent oyster mushroom (Pleurotus ostreatus) substrate to Soil Physico-chemical Properties and crop growth responses (느타리버섯 수확후배지 바이오차 시용이 토양 이화학성 및 작물 생육에 미치는 영향)

  • Jae-Eun Jang;Sung-Hee Lim;Min-Woo Shin;Ji-Young Moon;Joo-Hee Nam;Gab-June Lim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.73-82
    • /
    • 2023
  • This study was conducted to investigate the effect of soil physico-chemical properties and crop growth responses for application of biochar derived from substrate with post harvest of oyster mushroom. The biochar was produced at 450~600℃ using a top-light up draft gasifier (TLUD) production system. As a result of elemental analysis, the biochar used was C 76.2%, H 2.5%, N 3.2%, and H/C was 0.39, which met the international certification standards for biocarbons (IBI) below 0.7. The chemical properties were 10.1 for pH, 1.0% for P2O5, 1.8% for K2O, and 2.5% for CaO. The application rates of biochar were 0, 100, 200, 300, and 500 kg/10a. For cultivation of chinese cabbage and welsh onion, soil organic matter (OM), total nitrogen (T-N), total carbon (T-C), Ex.cation K contents and cation exchange capacity (CEC) in the treatments were increased compared to the no treatment. In addition, the bulk density was lowered and the porosity was increased, improving the soil physical properties in the treated soil. The growth of chinese cabbage and green onion increased with the application of biochar, but the yields of chinese cabbage and green onion did not significantly different among the treatments. Soil carbon sequestration in the treatments enhanced with increasing the amount of biochar application. It is expected to apply the biochar derived from spent oyster mushroom substrate in the eco-friendly farm soil management, improving soil physico-chemical properties.

A Study on the Right Direction of Green Standard for Energy and Environmental Design(G-SEED) from the Perspective of Landscape Architecture (조경관점의 녹색건축 인증기준에 대한 방향 정립)

  • Cha, Uk Jin;Nam, Jung Chil;Yang, Geon Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.4
    • /
    • pp.45-56
    • /
    • 2016
  • In this study, an analysis has been conducted on the evaluation criteria of current G-SEED(Green Standard for Energy and Environmental Design) and on the 78 buildings, certified by G-SEED, for 3 years from November, 2012 to November, 2015. Based on the results of this analysis, four issues are driven and proposed hereinafter. Issue 1 : Nowadays, the psychological proportion of landscape architecture in building is getting greater than ever so that it shows reliable reduction of carbon dioxide. Therefore, so far as the eight kinds of buildings are concerned, the evaluation items of G-SEED must include those of landscape architecture mandatorily through its enlargement. Issue 2 : It is undesirable factor that inhibits precise evaluation on landscaping area to let other areas appraise landscape architecture because it requires outstanding professionalism. So, G-SEED should not only ensure landscaping professionalism for the correct evaluation but also let landscape area participate in assessing other areas. Issue 3 : Many previous researches turned out that landscape planting technique has excellent effect on saving energy and reducing temperature of buildings. Thus, landscape planting technique of landscape area is required to be one of the evaluation items of energy sector. Issue 4 : Tree management also has to be newly included as one of the evaluation factor for the maintenance relating to the landscape architecture. G-SEED, enacted and enforced by the Green Building Creation Support Act in 2013, surely is effective system to reduce carbon dioxide in buildings. This is a special Act in its nature that is superior to Construction Law and must be observed by all means to construct buildings. Under the umbrella of this legal system, various of researches and products are contributing to creating new jobs in construction area. However, it is a well-known fact that landscape architecture area has shown less interest on this Act than that of construction area. In conclusion, it is necessary that landscape industry should conduct continuous researches on G-SEED and pay more attention to the Act enough to harvest related products and enlarge its work area.

Suggestion of Thermal Environment Miniature for Evaluation of Heating Efficiency Based on Thermal Conductivity Measurement Method of Building Materials (건축재료의 열전도율 측정방법에 의한 바닥재 난방효율 평가용 열환경 모형 제안)

  • Jeon, Ji-Soo;Seo, Jung-Ki;Kim, Su-Min
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.269-280
    • /
    • 2011
  • Today, global warming is one of main problems all over the world. The cause of the global warming is carbon dioxide outbreak by the rapidly increasing energy use. Therefore, it is necessary to save energy in each industrious field. It was investigated that the half of total energy consumption over the world was used for construction and building. Therefore, the saving of the building energy plays a significant role in decreasing total energy consumption. With the considerable increase in building energy consumption, a green building rating system and certification are required to reduce building energy consumption and $CO_2$ emissions. Of various elements reducing building energy, the thermal conductivity of materials affects the energy consumption as a basic element, which is directly related with reducing energy consumption. In particular, as the thermal conductivity of finishing materials is an important factor to decide heating energy efficiency of floor heating system, the investigation and development are necessary.

A study on the change effect of emission regulation mode on vehicle emission gas (배기가스 규제 모드 변화가 차량 배기가스에 미치는 영향 연구)

  • Lee, Min-Ho;Kim, Ki-Ho;Lee, Joung-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1108-1119
    • /
    • 2018
  • As the interest on the air pollution is gradually rising at home and abroad, automotive and fuel researchers have been studied on the exhaust and greenhouse gas emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward two main issues : exhaust emissions (regulated and non-regulated emissions, PM particle matter) and greenhouse gases of vehicle. Exhaust emissions and greenhouse gases of automotive had many problem such as the cause of ambient pollution, health effects. In order to reduce these emissions, many countries are regulating new exhaust gas test modes. Worldwide harmonized light-duty vehicle test procedure (WLTP) for emission certification has been developed in WP.29 forum in UNECE since 2007. This test procedure was applied to domestic light duty diesel vehicles at the same time as Europe. The air pollutant emissions from light-duty vehicles are regulated by the weight per distance, which the driving cycles can affect the results. Exhaust emissions of vehicle varies substantially based on climate conditions, and driving habits. Extreme outside temperatures tend to increasing the emissions, because more fuel must be used to heat or cool the cabin. Also, high driving speeds increases the emissions because of the energy required to overcome increased drag. Compared with gradual vehicle acceleration, rapid vehicle acceleration increases the emissions. Additional devices (air-conditioner and heater) and road inclines also increases the emissions. In this study, three light-duty vehicles were tested with WLTP, NEDC, and FTP-75, which are used to regulate the emissions of light-duty vehicles, and how much emissions can be affected by different driving cycles. The emissions gas have not shown statistically meaningful difference. The maximum emission gas have been found in low speed phase of WLTP which is mainly caused by cooled engine conditions. The amount of emission gas in cooled engine condition is much different as test vehicles. It means different technical solution requires in this aspect to cope with WLTP driving cycle.