• Title/Summary/Keyword: 친환경 내구설계 시스템

Search Result 6, Processing Time 0.024 seconds

Development of Hybrid Fuel Cell UPS System (하이브리드 연료전지 UPS 시스템 개발)

  • Hyun, Deok-Su;Jang, Min-Ho;Kim, Tae-Sin;Oh, Se-Woong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.235-235
    • /
    • 2009
  • 본 연구는 친환경 신새생 에너지를 이용한 전력 시스템을 개발함으로써 전력 IT인 Smart Grid 기술 활용과 더불어 예기치 못한 정전으로부터 중요한 전자 장비를 보호하는 UPS 기능을 갖는 친환경 3.0kW급 하이브리드 연료전지 UPS 시스템을 개발하는 것이다. 이를 위하여 시뮬레이션 기법을 이용하여 소형 경량화에 따른 구성 부품 배치 합리화 및 발생열 최적화 설계를 도출하였으며, 연료전지용 장수명 밀폐형 Ni-MH전지, 고효율 전력변환기, 하이브리드 PMS의 설계 및 제작과 개발된 3kW급 하이브리드 연료전지 UPS 시스템 기능 및 성능 평가를 공인 기관에서 검증받았다. 본 연구를 통하여 개발된 연료전지용 장수명 100Ah급 밀폐형 Ni-MH전지는 밀폐화와 더불어 장수명화 및 저온 방전 특성이 우수한 뿐만 아니라 KS규격을 모두 만족하였으며, 내구성도 DOD100%에서 1,093cycle의 결과를 얻을 수 있었다. 또한, 전지 설계 및 제작 기술뿐만 아니라 양산화 관련 기술들이 개발되어 향후 고용량, 고출력, 장수명의 축전지가 필요로 하는 분야에 적용될 수 있는 기반이 마련되었다. 또한 고효율 전력 변환기 및 연료전지과 축전지를 조절하는 PMS을 탑재한 소형 경량화 된 친환경 IT제품의 이미지를 구현하였다.

  • PDF

A Study on the Development of Sustainable Durability Design System for Reinforced Concrete Structure under Chloride Attack Environments (염해 환경하의 철근콘크리트 구조물의 친환경 내구설계 시스템 개발에 관한 연구)

  • Kim, Rak-Hyun;Roh, Seung-Jun;Tae, Sung-Ho
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.87-94
    • /
    • 2011
  • This study was suggested to develop sustainable durability design system and proposed the plan to evaluate design conditions that meet the intended service life and $LCCO_{2}$ reduction level of reinforced concrete structure easily from the early design stage. For that the W/B and covering depth of the concrete structure were calculated through calculation of service life based on standard specification expression and the quantitative reduction rate of the vertical member of reinforced concrete structure by the calculated W/B was applied. Life cycle of building classified into construction stage, operation stage, maintenance stage, and demolition/disposal stage and the method of $CO_{2}$ evaluation of each stage was proposed. For construction stage, the major construction materials that take up over 80% $CO_{2}$ emitting during building construction were selected and the $CO_{2}$ evaluation method for 5 standard apartment houses was proposed. Also, for operation stage, $CO_{2}$ emission was calculated through calculation of heating load by energy efficiency rating certification system. For maintenance stage, $CO_{2}$ emission was calculated using concept of re-construction by life and for demolition/disposal stage was calculated with the use of construction standard estimate. As a result of the case study by such evaluation methods, 80 years of service life and 17 specifications of sustainable durability design that meet the 40% intended $LCCO_{2}$ reduction level were deduced. The Maximum $LCCO_{2}$ reduction rate was analyzed by 47.2%.

A Performance Evaluation of Concrete for Low-carbon Eco-friendly PC Box for Near-surface Transit System (저심도 철도시스템 구축을 위한 저탄소 친환경 PC 박스용 콘크리트의 성능 평가)

  • Koh, Tae-Hoon;Ha, Min-Kook;Jung, Ho-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3587-3595
    • /
    • 2015
  • Low-carbon eco-friendly precast concrete (PC) box structure has been recently was developed as an low-cost infrastructure of near-surface transit system. The concrete of PC box was manufactured by industrial byproducts such as ground granulated blast furnace (GGBF) slag, flyash and rapid-cooling electric arc furnace (EAF) oxidizing slag, its mechanical property and durability were estimated in this study. Based on the mechanical and durability tests, it is found that low-carbon eco-friendly concrete shows high initial compressive strength, more than 90% of design strength (35MPa), and high resistance to salt-attack, chemical- attack and freeze-thaw. Therefore, low-carbon eco-friendly PC box concrete technology is expected to contribute to the railway with low environmental impact.

Improvement in the performance and reliability of components by PVC/PACVD Coating (PVD/PACVD 코팅을 통한 부품의 성능과 내구성 향상)

  • Kim, Jong-Seong;Jeong, Yong-Tae;Seok, Jin-U
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.132-133
    • /
    • 2007
  • 제품 표면에 코팅을 하는 것은 원자재나 디자인을 개선하는 것보다 훨씬 효과적인 결과를 가져온다. 제품에 코팅을 적용하면 성능과 신뢰성이 향상되어 수명이 증가되고, 소형 경량화가 가능해진다. 자동차 엔진과 그 외의 부품에 적용할 경우 에너지 절감 효과가 있고 친환경 요구에 부응할 수 있어 그 효과가 크다. 시스템의 잠재된 성능은 특정 목적에 따라 맞춤된 PVD/PACVD 코팅에 의해서 향상 될 수 있고, 실제로도 많은 경우 PVD/PACVD 코팅만이 새로운 설계 솔루션을 실현 가능하게 해준다.

  • PDF

Status and Prospect of Spacecraft Propulsion System (우주비행체 추진기관 기술 현황 및 전망)

  • Kim, Su-Kyum;Chae, Jong-Won;Won, Su-Hee;Jun, Hyong-Yoll
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.8
    • /
    • pp.695-701
    • /
    • 2016
  • Spacecraft propulsion system is a kind of rocket engine that has been developed from the end of 1950s for attitude control and orbit maintenance of satellite. Since the spacecraft propulsion system has to be used for a relatively long time, therefore, stability of propellant and life of thruster could be very important factor for propulsion system design. Recently, green propellant propulsion and all electrical propulsion system have became very important issue, and we also need a development according to well organized plan. In this paper, we will introduce the development status, key technologies and development prospect of spacecraft propulsion system.

Research on Co- and Mo-Based Catalysts for the Oxygen Evolution Reaction in Electrochemical Water Splitting System (전기화학적 물 분해 시스템에서 산소발생반응을 위한 Co와 Mo 기반 촉매의 최근 연구 동향)

  • Junseong Park;Won Suk Jung;Jong Chan Bu
    • Journal of the Korean Electrochemical Society
    • /
    • v.26 no.4
    • /
    • pp.64-70
    • /
    • 2023
  • Global warming is getting worse since a dramatic increase in greenhouse gas emissions recently. As a result, the necessity and implementation of carbon neutrality is required more urgently. To do this, among various new and renewable energies, attention in hydrogen arises. Hydrogen as a carbon-free power source is an abundant resource on Earth and is eco-friendly. Eventually, perfectly eco-friendly hydrogen can be obtained through electrolysis of water. However, the catalyst used in the oxygen evolution reaction is rare and expensive, and has a durability issue. Consequently, the development of a non-precious metal catalyst is necessary. In this review paper, we summarize and introduce Co- and Mo- based catalysts among recently announced oxygen evolution catalysts. This will help understand the design of catalyst to increase the activity and durability of non-precious metal catalysts.