• Title/Summary/Keyword: 친환경 교통수단

Search Result 68, Processing Time 0.025 seconds

Aerodynamic Analysis, Required Power and Weight Estimation of a Compound (Tilt rotor + Lift + Cruise) Type eVTOL for Urban Air Mobility using Reverse Engineering Techniques (역설계 기법을 사용한 도심항공 모빌리티용 복합형(틸트로터 + 양력 + 순항) eVTOL의 공력 해석, 요구 동력 및 중량 예측)

  • Kim, Dong-Hee;Lee, Joon-Hee;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • Recently, eVTOL, the next-generation of eco-friendly transportation, has been in the spotlight due to global warming along with traffic jams in large cities of many countries. This study benchmark the external features of Hyundai Motors S-A1, a compound eVTOL combined fixed and tilt rotors among many types of eVTOLs, to create the basic configuration using reverse design techniques. Basic configurations were created using CATIA and aerodynamic analyses were performed using the aircraft design and aerodynamic analysis programs, OpenVSP, XFLR5, and the aircraft wetted area, drag, and lift were calculated after selecting the airfoil, incidence angle, and dihedral and anhedral angles through trade study. Also, required powers were estimated for completing the given mission profile and components weight and the total weight were predicted using the estimation formula and data survey.

Exploring the Cognitive Factors that Affect Pedestrian-Vehicle Crashes in Seoul, Korea : Application of Deep Learning Semantic Segmentation (서울시 보행자 교통사고에 영향을 미치는 인지적 요인 분석 : 딥러닝 기반의 의미론적 분할기법을 적용하여)

  • Ko, Dong-Won;Park, Seung-Hoon;Lee, Chang-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.5
    • /
    • pp.288-304
    • /
    • 2022
  • Walking is an eco-friendly and sustainable means of transportation that promotes health and endurance. Despite the positive health benefits of walking, pedestrian safety is a serious problem in Korea. Therefore, it is necessary to investigate with various studies to reduce pedestrian-vehicle crashes. In this study, the cognitive characteristics affecting pedestrian-vehicle crashes were considered by applying deep learning semantic segmentation. The main results are as follows. First, it was found that the risk of pedestrian-vehicle crashes increased when the ratio of buildings among cognitive factors increased and when the ratio of vegetation and the ratio of sky decreased. Second, the humps were shown to reduce the risk of pedestrian-related collisions. Third, the risk of pedestrian-vehicle crashes was found to increase in areas with many neighborhood roads with lower hierarchy. Fourth, traffic lights, crosswalks, and traffic signs do not have a practical effect on reducing pedestrian-vehicle crashes. This study considered existing physical neighborhood environmental factors as well as factors in cognitive aspects that comprise the visual elements of the streetscape. In fact, the cognitive characteristics were shown to have an effect on the occurrence of pedestrian- related collisions. Therefore, it is expected that this study will be used as fundamental research to create a pedestrian-friendly urban environment considering cognitive characteristics in the future.

An Empirical Evaluation Scheme for Pedestrian Environment by Integrated Approach to TOD Planning Elements (TOD 계획 요소의 통합적 접근을 통한 친보행 환경의 평가 방안)

  • Joo, Yong-Jin;Ha, Eun-Ji;Jun, Chul-Min
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.15-25
    • /
    • 2012
  • In order to resolve transportation system focused on vehicles which have led to all sorts of problems such as traffic congestion, air pollution and so on, Korea recently have tended to center around Transit Oriented Development(TOD) which is capable of initiating public traffic demands. It is imperative to develop objective evaluation method which is able to measure pedestrian environment and amenity in order to facilitate green transit. The purpose of this paper is to present evaluation indices and measurement framework of pedestrian environment by analyzing effect on TOD major planning factors such as diversity, density, design, and supply etc. For this, we applied evaluation index with regard to TOD planning factors, investigating connection to pedestrian and employed AHP (Analytic Hierarchy Process) so as to quantify the result of measurement in Jongro 3ga and Hangangjin station. As a result, we presented relationship between travel patterns of pedestrian and each TOD planning factor. More importantly, the proposed framework is expected to make the best of the visualization as well as evaluation method for the pedestrian accessibility, convenience of public transportation, and the mixed land-use patterns in subway area and transit center.

Comparative Analysis on the Rail and Road Freight Transportation: Air contaminant and greenhouse gas emission (철도화물과 도로화물수송의 비교분석 연구: 대기오염물질 및 온실가스 배출)

  • Kim, Young-Joo;Park, Jaehyun;Oh, Yong-hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.94-101
    • /
    • 2016
  • With increasing global concerns for environmental impacts, efforts have been made to encourage a modal shift from road freight to an eco-friendly transport system such as rail freight. In Korea, the government has set master plans for a green transport system but has not taken any substantial action to promote rail freight transport. In developing policies and actions to promote rail freight, quantitative studies on environmental impacts among transportation means are essential. This study examined the air pollutant emissions and greenhouse gas (GHG) emissions per unit freight transported by road and rail, respectively. To improve the accuracy, we analyzed emission data and freight transport mileage of rail freight considering diesel locomotives and electric locomotives separately. The results show that unit air pollutant emissions (except SO2) from road freight are about 7~15 times more than those from rail freight. In addition, the GHG emission unit of road freight is about 4 times higher than that of rail freight.

The Direction and Development of KGS Safety Code of High Pressure Hydrogen Cylinder for the Hydrogen Fuel Cell Vehicle (수소연료전지 자동차용 고압수소용기의 KGS안전기준 개발 및 방향)

  • Kim, Chang Jong;Lee, Seung Hoon;Kim, Young Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.112.2-112.2
    • /
    • 2010
  • 지구의 온난화로 인한 기상변화 등이 계속적으로 발생하는 가운데 전 세계는 지구 온난화의 가장 근본적인 원인인 이산화탄소의 방출을 줄이기 위한 방안을 찾기 위해 많은 노력을 하고 있다. 이에 대해 전 세계적으로 각종의 기후협약 체결, 리우선언, 도쿄의정서 등을 통해 온실가스 배출원인인 석유 등 화석에너지 배출을 억제하기 위한 활동이 행해지고 있으며, 기존의 화석연료를 대체할 수 있는 새로운 에너지를 발견하기 위한 연구개발에도 박차를 가하고 있다. 이러한 계속적인 연구개발에서, 세계의 국가들은 친환경 에너지인 태양열, 풍력, 지열 및 수소에너지와 같이 화석연료를 대체할 수 있는 다양한 에너지를 조사하고 개발해왔고 현재도 가장 적합한 에너지 자원을 찾기 위하여 노력 중에 있다. 최근에, 수많은 대체에너지 중 수소 에너지는 유해배출가스가 없기 때문에 가장 유망한 대안이라고 판단되어 전 세계가 수소에너지 연구개발에 주목하고 있다. 이러한 수소에너지를 교통수단에 적용하기 위하여 전 세계적으로 안전성 및 기술 확보를 위한 기술개발과 안전기준의 확립하기 위해 노력하고 있다. 현재 기술적으로 수소를 자동차용 연료로 사용하기 위해서는 수소를 액체 상태 및 압축 상태로 저장하는 것이다. 두 가지 저장방법 중 세계 대부분의 자동차 메이커들은 수소를 압축하는 방식을 채택하고 있으며, 자동차의 주행거리를 최대한 확보하기 위하여 수소가스를 고압으로 압축한 상태로 저장하는 방식을 사용하고 있다. 이에 따라 고압의 수소를 안전하게 저장할 수 있는 고압수소용기의 개발이 필요하다. 수소연료전지 자동차에 장착이 가능한 고압으로 압축된 수소를 저장할 수 있고, 자동차에 탑재할 수 있도록 적합한 크기의 가벼운 용기의 개발이 진행되어지고 있다. 자동차용 용기는 크게 4가지 타입으로 구분지어 진다. 현재는 4가지 타입의 압축용기 중 안전성과 중량을 만족시키기 위해 Type3와 Type4 형태의 용기가 수소자동차에 시범적으로 적용되어 운용되고 있다. 또한 고압수소용기의 신뢰성과 안전성을 확보하기 위한 기준 및 코드가 국 내외에서 연구 개발되고 있다. 본 연구에서는 수소연료전지자동차에 장착되는 고압수소용기의 국제기준 동향에 따른 국내의 차량용 고압수소용기를 위한 KGS 안전기준의 개발현황과 개발방향을 제시하고자 한다.

  • PDF

Development of Evaluation Criteria for Efficient Utilization of Railway Yards in Korea (철도폐선부지의 효율적 활용을 위한 평가기준 개발)

  • Kim, Min Kyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.2
    • /
    • pp.83-92
    • /
    • 2017
  • Increased investment in environment-friendly transport vehicles has led to rapid transit of railway tracks, double track program, linear improvements in railway lines, and moving railroad routes into the suburbs. They resulted in fast increase of railway yards. However, as the railroad yards being neglected, urban fine sites have been degraded. Local governments kept seeking ways to utilize the railway yards. In addition, Ministry of land, infrastructure and transport enacted "Guidelines for utilization of railway yards". The Guidelines categorized the railway yards into three types; conservation, utilized, and other sites in order to make efficient use of them. The railway yards have been converted and used for parks, rail bike trails, bike paths, and solar projects. It seems that studies are needed on diverse use of the yards and on post evaluation. This study investigated current uses of railway yards, domestic and foreign, and analyzed for the pertinent conditions on natural and cultural landscape, educational value, location and accessibility, potential for recreational area, and development opportunities. In this study, I proposed a quantitative evaluation method, and to find way to diversify the use of railway yards.

Design of the bicycle road networks concerning the bicycle users' purposes (자전거 이용자의 이용목적에 부합하는 자전거 전용도로 설계에 관한 연구)

  • Lee, Jeabin;Huh, Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.385-391
    • /
    • 2013
  • As a solution for environmental problems caused by increasing number of vehicles, it is encouraged to use a bicycle as an environment-friendly transportation method. To vitalize the bicycle usage, it is a necessary to construct bicycle roads that are safe and suitable for users. Based on the previous research results, we assume the main purposes of bicycle usages are mainly local leisure activity and school commuting. Thus, the proposed method finds the shortest link between the existing bicycle road network and bicycle usage facilities such as leisure activity places or schools over public road network. Then, we carry out the RTK DGPS survey for the candidate links, and analyze the slopes of them. When the slope of a found link is larger than a threshold, an alternative link is re-found for the safety and convenience of a bicycle user. The proposed method is applied to the real bicycle road network in Mokpo, Chunnam and the results are discussed.

Development of a Fuzzy Control Based Chainless PAS Bicycle (Fuzzy 제어기 기반의 무체인 파워 보조 자전거 개발)

  • Jeong, Hoi-Seong;Kim, Gwan-Hyung;Lee, Hyung-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.119-125
    • /
    • 2012
  • This paper proposes a model for a chainless power assistor system(PAS) that can provide the required power based upon operational status by designing a chainless electric bicycle that can be substituted for a general chain type bicycle and which is also an environmentally friendly means of transportation. This paper designed a fuzzy control algorithm that can intelligently examine operational status through the stopping force sensor of a chainless intelligently auxiliary power system it and also have the power of an auxiliary power system to be controlled by the vehicle's operational status. This paper designed an intelligent electric bicycle that provides auxiliary power to a general bicycle system relying only upon the stepping force of a human and systems to provide auxiliary power to the intelligent chainless bicycle model designing presented.

Investigation of Soil Pollution Status for Railroad Depot (철도 차량기지의 토양오염 실태 조사)

  • Oa, Seong-Wook;Lee, Tae-Gyu
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.788-792
    • /
    • 2009
  • Railroad is well known for eco-friendly transportation system. But, for past few decades, there might be happened many contamination acts in railway facility sites. Industrial and municipal solid wastes produced to maintain and fix trains were dumped to underground of railroad depot area. To develop and reconstruct this area, we should remediate the contaminated soil and ground water. This study was conducted to evaluate the soil pollution status of railroad depot and propose the optimum remediation processes. Our investigation showed that main pollutants sources were TPH and some heavy metals from the dump site. The surveying results for the soil under rail track and crossing nose areas showed TPH contamination from crossing nose area causing lubricant agent. It could be use and rehabilitate the railroad facility areas to an intended purpose with an application of well designed in-situ and ex-situ remediation processes.

A Study on Optimal Horizontal Alignment Design for PRT Vehicle (PRT 주행선로 최적평면선형 설계에 관한 연구)

  • Um, Ju-Hwan;Kim, Baek-Hyun;Jeong, Rag-Gyo;Kang, Seok-Won;Byun, Yeun-Sub
    • Journal of Digital Convergence
    • /
    • v.12 no.10
    • /
    • pp.283-289
    • /
    • 2014
  • Personal rapid transit(PRT) systems have been highlighted in future transportation developments as a result of their potential as sustainable and eco-friendly transport solutions that provide demand-responsive mobility services. One of the most important characteristics of the personal rapid transit system(PRT) is that it can be constructed and operated at a low cost. A fundamental study on the alignment of the PRT guideway considering running stability was conducted in the present study. In addition, a parameter analysis of the major alignment design variables such as curve radius, transition curve length and cant was performed by vehicle dynamic analysis and optimum guideway alignments were proposed. The analysis results suggested that the theoretical values were satisfied and also confirmed the possibility of reducing the standard.