• Title/Summary/Keyword: 친환경재료

Search Result 399, Processing Time 0.026 seconds

Kinetic Parameter Estimation of Ru Catalyst for Steam Methane Reforming (증기 메탄 개질 반응의 Ru 촉매 Kinetic Parameter 예측)

  • JOO, CHONGHYO;KIM, MYUNGJUN;CHO, HYUNGTAE;LEE, JAEWON;KIM, JUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.499-506
    • /
    • 2022
  • This study proposes kinetic parameters of Ru catalyst for steam methane reforming (SMR). First, extensive experiments are performed under different SMR conditions to evaluate performance of the catalyst in SMR. Second, a kinetic model is designed and developed for parameter estimation and validation using gPROMS. Finally, estimated parameters are fitted to the kinetic model and then, the model results are compared with the experimental data. The model results are in a good agreement with the experimental data.

A Study on the Environment-Friendly Factors and Application Characteristics of Domestic and Foreign Domed Stadiums (국내외 돔경기장에 적용된 친환경 요소 및 적용특성 분석)

  • Kim, Dong-Woo;Seok, Ho-Tae;Yang, Jeong-Hoon
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.9-14
    • /
    • 2008
  • This study was carried out environment-friendly factors in domestic and foreign domed stadium, and was derived environment-friendly factors of built domed stadium and these are divided into 3 parts; energy, indoor environment and material & resource. In addition, this study analyzed characteristics of application about environment-friendly fector related its space size and climate.

  • PDF

Development of Black Liquor Multiple-effect-evaporation Process Model to Predict Steam Savings (스팀 절감량 예측을 위한 흑액 다중 효용 증발 공정 모델 개발)

  • Kim, Yurim;Lim, Jonghun;Choi, Yeongryeol;Kim, Taebok;Park, Hansin;Cho, Hyungtae;Kim, Junghwan
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • This study developed the black liquor evaporation process models using the multiple-effect-evaporator according to the number of effects to predict steam consumption. The developed models were divided into the black liquor preheating and evaporation processes, and a virtual reboiler was added to predict steam consumption. In simulation results, the steam consumption in the double-effect-evaporator was decreased by 48.9 %, and as the number of effects increased, the steam consumption was decreased. Finally, the steam consumption in the octuple-effect-evaporator was decreased by 61.2 %. Also, this study suggests a strategy for deriving the optimal number of effects in the process by analyzing the latent heat recovered from the saturated vapor produced in the multiple-effect-evaporator and the amount of saturated vapor produced by each effect.

An Experimental study on correlation of velocity and tractive force and bed materials loss in the high velocity using new eco-material (친환경 신소재를 이용한 고유속흐름에서 유속과 소류력의 상관성 및 하상재료의 유실에 관한 실험연구)

  • Kim, Gwang Soo;Jung, Dong gue;Kim, Young Do;Park, Yong Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.134-134
    • /
    • 2019
  • 전 지구적 기후 변화가 진행함에 따라 극심한 강우가 증가하고 그로인해 하천의 유량과 유속이 증가하여 제방의 침식 또는 하상의 여러 변화가 일어나 문제가 되고 있다. 이를 예방하기 위한 국내 하천사업에는 호안공법과 높은 유속의 흐름에서도 유실이 되지 않는 하상재료에 대한 다양한 연구들이 진행되고 있으며, 호안공법을 도입 할 때 유속과 하상재료에 따라 하상변화에 미치는 영향을 파악하고 하상재료의 유실과 직접적인 관계가 있는 허용 유속, 소류력에 대해 평가하고 설계하는 것은 하천설계기준에 있어 매우 중요하다. 본 연구에서는 콘크리트와 같이 수질오염을 유발하지 않는 친환경 신소재를 활용하여 실제 제방과 하상에 사용되고 있는 재료인 모래와 황토를 혼합하여 이용하였으며 유속 6 m/s까지 재현이 가능한 실험실 규모의 무경사고속수로와 실시간 데이터측정 장치를 이용하여 유속과 소류력의 상관성을 분석 및 흐름특성을 파악하고 하상의 재료에 대한 적용성을 검토하며 재료에 대한 유실정도를 평가하였다.

  • PDF

Flexural Behavior of Hwangtoh Concrete Beams with Recycled PET Fiber (재생 PET섬유가 혼입된 황토 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Nam, Jin-Won;Yi, Na-Hyun;Kim, Jang-Jay-Ho;Choi, Hong-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.619-626
    • /
    • 2008
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement usage is suggested as one of the solutions for eco-friendly concrete. To reduce the amount of cement usage, the pozzolan-reaction materials such as ground granulated blast furnace slag, fly ash, and meta kaolin are widely used as the mineral admixture. Hwangtoh which deposited broadly in Korea is a well known eco-friendly material and the activated Hwangtoh with pozzolan-reaction can be practically used as a mineral admixture of concrete. Meanwhile, PET fiber made of recycled PET bottle is a type of recycled material, which can be used to control micro cracks in concrete. But the study about concrete mixed with recycled PET fiber is insufficient and the research of Hwangtoh concrete mixed with PET fiber is urgently needed presently. In this study, experiment and analysis flexural behavior of Hwangtoh concrete blended with recycled PET fiber are carried out. The results are discussed in detail.

A Study on the Technology Trends related to Development of Eco-Friendly Concrete Product (친환경 콘크리트 제품 개발관련 기술동향 조사연구)

  • Kim, Jong-Gurl;Kwon, Byung-Moo
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.04a
    • /
    • pp.359-363
    • /
    • 2011
  • 현재 4대강 유역개발과 하천 정비 등 관련된 대규모 토목공사가 진행되고 있다. 친환경적인 수자원 정비를 가능하게 하는 친환경 콘크리트 제품의 개발은 환경오염 방지 및 환경보전에 있어서 필수적이다. 현재 국내에서는 콘크리트에 다양한 자원 순환형 재료를 적용하고 있지만, 적극적 친환경 콘크리트의 연구는 아직 미미한 상태이다. 본 논문에서는 친환경적인 수자원 정비를 가능하게 하는 콘크리트의 필요성과 활용측면에 대해 논해 보고자 한다. 또한 국내외 관련 기술현황을 비교하여 현 콘크리트 제품 개발 산업에 적용방안을 제시하고자 한다.

  • PDF

A Study on the Fabrication and Mechanical Properties Evaluation of Natural Fiber Composites added Eco-friendly Materials (친환경 소재를 첨가한 천연섬유 복합재의 제조 및 기계적 물성 평가 연구)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Prabhakar, M.N.;Song, Jung-Il
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.213-219
    • /
    • 2020
  • Recently, global facing environmental issues have been raised caused by plastic waste. Hence, increasing the demand for interest in environmentally friendly materials. In this row, research on engineering composite materials also replacing the synthetic reinforcement by introducing natural fibers. However, focus on the strength and interfacial adhesion between matrix and reinforcement is very essential in natural fiber composite, which is insufficient in the literature. There are number of approaches for improving the mechanical strength of the composites, one of the common methods is to reinforce additive nanoparticles. The present investigation, bio-additives were synthesized utilizing bio-waste, cheap, bio-degradable sea-weed powder that could replace expensive nanomaterials and reinforced into the CFRP composite through Hand lay-up followed by a vacuum process. Mechanical properties were evaluated and analyzed through microanalysis. The results concluded that synthesized additives are effective for improving mechanical properties such as tensile, flexural, impact, and shear strength. Overall, the results confirmed that the fabricated composites have potential applications in the field of engineering applications.

A Study on the Material and Resource of Education Facilities in Green Building Certification Criteria (학교시설 친환경 인증사례를 통한 재료 및 자원항목 연구)

  • Kwag, Moon-Geun;Choi, Chang-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.2
    • /
    • pp.104-111
    • /
    • 2010
  • To promote environmentally responsible architectural practice, many nations have established their own Green Building Certification system. Until 2007, 138 Education facilities acquired certification but many people don't fully understand each item of Green building Certification Criteria yet. The purpose of this study is to analyze 40 certified Education facilities and to find the reasons why they had acquired low scores and high scores. These scores lead us to propose a way that each contents the efficient approaches and alternative visions of Education facilities. Because the part of material and resource is initial of the projects, this study focuses on it and aims to pick out the items requiring improvement for the Education facilities. We expect to be helpful for the next design works through result of this thorough study.