Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.5.499

Kinetic Parameter Estimation of Ru Catalyst for Steam Methane Reforming  

JOO, CHONGHYO (Green Materials and Processes R&D Group, Korea Institute of International Technology)
KIM, MYUNGJUN (Office of Research Affairs/University Industry Foundation, Yonsei University)
CHO, HYUNGTAE (Green Materials and Processes R&D Group, Korea Institute of International Technology)
LEE, JAEWON (Green Materials and Processes R&D Group, Korea Institute of International Technology)
KIM, JUNGHWAN (Green Materials and Processes R&D Group, Korea Institute of International Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.5, 2022 , pp. 499-506 More about this Journal
Abstract
This study proposes kinetic parameters of Ru catalyst for steam methane reforming (SMR). First, extensive experiments are performed under different SMR conditions to evaluate performance of the catalyst in SMR. Second, a kinetic model is designed and developed for parameter estimation and validation using gPROMS. Finally, estimated parameters are fitted to the kinetic model and then, the model results are compared with the experimental data. The model results are in a good agreement with the experimental data.
Keywords
Hydrogen production; Steam methane reforming; Ru catalyst; Parameter estimation; gPROMS; Kinetic study;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Y. S. Kim, K. H. Lee, D. K. Lee, Y. D. Lee, and K. Y. Ahn, "Midtemperature operation characteristics of commercial reforming catalysts: comparison of rubased and nibased catalyst", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 3, 2022, pp. 149155, doi: https://doi.org/10.7316/KHNES.2021.32.3.149.   DOI
2 B. J. Kim, W. L. Yoon, and D. J. Seo "Analysis of the economy of scale for domestic steam methane reforming hydrogen refueling stations utilizing the scale factor", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 3, 2019, pp. 251 259, doi: https://doi.org/10.7316/KHNES.2019.30.3.251.   DOI
3 J. Xu and G. F. Froment, "Methane steam reforming, methanation and watergas shift: I. Intrinsic kinetics", AIChE J., Vol. 35, No. 1, 1989, pp. 8896, doi: https://doi.org/10.1002/aic.690350109.   DOI
4 D. L. Hoang, S. H. Chan, and O. L. Ding, "Kinetic and mod elling study of methane steam reforming over sulfide nickel catalyst on a gamma alumina support", Chem. Eng. J., Vol. 122, No. 13, 2005, pp. 111, doi: https://doi.org/10.1016/j.cej.2005.06.004.   DOI
5 S. Ergun, "Fluid flow through packed columns", Chemical Engineering Progress, Vol. 48, 1952, pp. 8994.
6 S. Lee, J. Bae, S. Lim, and J. Park, "Improved configuration of supported nickel catalysts in a steam reformer for effec tive hydrogen production from methane", J. Power Sources, Vol. 180, No. 1, 2008, pp. 506515, doi: https://doi.org/10.1016/j.jpowsour.2008.01.081.   DOI
7 F. MoralesCano, L. F. Lundegaard, R. R. Tiruvalam, H. Falsig, and M. S. SkjothRasmussen, "Improving the sinter ing resistance of Ni/Al2O3 steamreforming catalysts by promotion with noble metals", Appl. Catal. A Gen., Vol. 498, 2015, pp. 117125, doi: https://doi.org/10.1016/j.apcata.2015.03.016.   DOI
8 J. W. Lee, H. T. Cho, M. J. Kim, S. Hall, and I. Moon, "Doubletube reactor design and process optimization for onsite steam methane reforming processes", Ind. Eng. Chem. Res., Vol. 59, No. 40, 2020, pp. 1802818038, doi: https://dx.doi.org/10.1021/acs.iecr.0c02875.   DOI
9 Process Systems Enterprise Ltd., "gPROMS advanced user guide", Process Systems Enterprise Ltd., London, 2011. Retrieved from http://www.psenterprise.com.
10 M. Voldsund, K. Jordal, and R. Anantharaman, "Hydrogen production with CO2 capture", Int. J. Hydrogen Energy, Vol. 41, No. 9, 2016, pp. 49694992, doi: https://doi.org/10.1016/j.ijhydene.2016.01.009.   DOI
11 S. Hong, J. Lee, H. Cho, M. Kim, I. Moon, and J. Kim, "Multiobjective optimization of CO2 emission and ther mal efficiency for onsite steam methane reforming hydro gen production process using machine learning", J. Cleaner Production, Vol. 359, 2022, pp. 132133, doi: https://doi.org/10.1016/j.jclepro.2022.132133.   DOI
12 E. L. G. Oliveria, C. A. Grande, and A. E. Rodrigues, "Steam methane reforming in a Ni/Al2O3 catalyst: kinetics and dif fusional limitations in extrudates", Can. J. Chem. Eng., Vol. 87, No. 6, 2009, pp. 945956, doi: https://doi.org/10.1002/CJCE.20223.   DOI
13 V. Gnielinski, "Calculation of heatand mass transfer co efficient in the flow of gases through static packed beds", Erfahrenstechnik (Mainz), Vol. 16, No. 1, 1982, pp. 3639.
14 J. H. Ryu, K. Y. Lee, H. La, H. J. Kim, J. I. Yang, and H. Jung, "Ni catalyst washcoated on metal monolith with enhanced heattransfer capability for steam reforming", J. Power Sources, Vol. 171, No. 2, 2007, pp. 499505, doi: https://doi.org/10.1016/J.JPOWSOUR.2007.05.107.   DOI