• Title/Summary/Keyword: 친수표면

Search Result 483, Processing Time 0.028 seconds

Surface Modification of Poly(tetrafluoroethylene) (PTFE) Membranes (PTFE 막의 표면 개질 방법)

  • Jun Kyu Jang;Chaewon Youn;Ho Bum Park
    • Membrane Journal
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this review, surface modification methods of hydrophobic poly(tetrafluoroethylene) (PTFE) membrane are introduced and their improved hydrophilicity results are discussed. Fluoropolymer based membranes, represented by PTFE membranes have been used in various membrane separation processes, including membrane distillation, oil separation and gas separation. However, despite excellent physical properties such as chemical resistance, heat resistance and high mechanical strength, the strong hydrophobicity of PTFE membrane surface has become a challenging factor in expanding its membrane separation application. To improve the separation performance of PTFE membranes, wet chemical, hydrophilic coating, plasma, irradiation and atomic layer deposition are applied, modifying the surface property of PTFE membranes while maintaining their inherent properties.

A study on the improvement of hydrophilic properties of activated carbon surface by nitric acid treatment (질산 처리에 따른 활성탄 표면의 친수성 특성 향상에 관한 연구)

  • Kang, Hye Ju;Yang, So Yeong;Kim, Tae Min;Kim, Yong Ryeol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.5
    • /
    • pp.1241-1248
    • /
    • 2021
  • In order to figure out various environmental problems, various governments and companies are investigating more environmentally policies and technologies. In other words, activated carbon is widely used for the adsorption of different harmful gases and waste liquid treatment. However since the required surface properties are different in various industry, depending on the adsorption properties, the development of activated carbon demand in different ways. In this work, we have investigated and developed the activated carbon surface to improve the hydrophilic properties by nitric acid treatment through reforming of activated carbon.

Flow Rate Changes in the Heterogeneous Rectangular Microchannels with Different Hydrophilicity for the PDMS Bottom Surface (PDMS 표면특성에 따른 비균일계 마이크로채널의 유속 변화)

  • Noh, Soon-Young;Lee, Hyo-Song;Kim, Ki-Ho;Choi, Jae-Ho;Yu, Jae-Keun;Yoon, Soo-Kyung;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.13 no.3
    • /
    • pp.195-200
    • /
    • 2007
  • This study investigated the flow rate changes of the heterogeneous rectangular microchannels which have different hydrophilic property on the bottom surface. The heterogeneous rectangular microchannel has three native PDMS (poly-dimethyl siloxane) surfaces which were patterned by the soft lithography. PDMS bottom surface was treated by the argon plasma and coated by the allyl alcohol (99%). The channel length was 10, 20 and 30 mm and the channel width was 100, 200 and $300\;{\mu}m$, respectively. Several external voltages were applied to make the fluid flow by the electroosmosis in the microchannel. For the same electric field strength and hydrophilicity of the bottom surface, the flow rate is almost same. This result is matched to the theoretical expectation and confirms that the experimental system is reliable. With increasing the channel width, the flow rate increased for the same hydrophilicity of the bottom surface. The flow rate of the microchannel of higher hydrophilicity was larger than that of the microchannel of lower hydrophilicity. This result implies that the hydrophilicity change of the bottom surface could be applied to control the flow rate in the microchannel.

  • PDF

Transport Mechanism of an Initially Spherical Droplet on a Combined Hydrophilic/Hydrophobic Surface (친수성/소수성 복합표면상에서 초기 구형 액적의 이송 메커니즘)

  • Myong, Hyon Kook;Kwon, Young Hoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.11
    • /
    • pp.871-884
    • /
    • 2015
  • Fluid transport is a key issue in the development of microfluidic systems. Recently, Myong (2014) has proposed a new concept for droplet transport without external power sources, and numerically validated the results for a hypothetical 2D shape, initially having a hemicylindrical droplet shape. Myong and Kwon (2015) have also examined the transport mechanism for an actual water droplet, initially having a 3D hemispherical shape, on a horizontal hydrophilic/hydrophobic surface, based on the numerical results of the time evolution of the droplet shape, as well as the total kinetic, gravitational, pressure and surface free energies inside the droplet. In this study, a 3D numerical analysis of an initially spherical droplet is carried out to establish a new concept for droplet transport. Further, the transport mechanism of an actual water droplet is examined in detail from the viewpoint of the capillarity force imbalance through the numerical results of droplet shape and various energies inside the droplet.

자기배열구조를 이용한 다층다공질 세라믹스 제조

  • Kim, Byeong-Gon;Jeon, Ho-Seok;Park, Jong-Ryeok;Kim, Yong-In
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2006.05a
    • /
    • pp.340-341
    • /
    • 2006
  • 입자분포가 서로 다른 분체를 소수화 및 친수화 표면을 갖도록 표면개질을 하여 solid casting으로 성형하여 소결함으로써 계면장력에 의한 전기적 반발로 자기배열 구조를 갖는 다층 다공질 구조의 세라믹 담체의 제조가 가능하였다.

  • PDF

Surface Modification of Cement-Reinforcing Carbon Fibers by Low Temperature Plasma Process (저온 플라즈마 공정을 이용한 시멘트 보강용 탄소 섬유의 표면개질)

  • Cho, Dong Lyun;Kim, Hoon
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.361-365
    • /
    • 2005
  • Cement-reinforcing carbon fibers were surface-modified with $O_2$, $H_2O$, acrylic acid, diaminocyclohexane plasmas and their effects were investigated. Hydrophobic surfaces with water contact angles of $75{\sim}80^{\circ}$ were changed to hydrophilic surfaces. The water contact angles were reduced down to lower than $10^{\circ}$. As a result, the fiber's hygroscopic property and dispersion in water were improved. Also, Zeta potential of the fiber in water was changed from a negative value to positive values. As a result, adhesion with cement that had a negative Zeta potential was improved up to 57~124% through increased electrostatic interaction.

In Vitro Evaluation of Microleakage and Penetration of Hydrophilic Sealants Applied on Dry and Moist Enamel (법랑질 수분 처리에 따른 친수성 치면열구전색제의 미세누출과 열구 침투도 평가)

  • Ku, Jaewon;Lee, Jewoo;Ra, Jiyoung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.3
    • /
    • pp.272-279
    • /
    • 2017
  • This study aimed to evaluate the microleakage and penetration of two hydrophilic sealants, Embrace $Wetbond^{TM}$ and Ultraseal $XT^{(R)}$ $hydro^{TM}$, when applied on dry and moist enamel, as compared to a conventionally used hydrophobic sealant, $Clinpro^{TM}$. A total of 60 sound human third molars were randomly divided into 5 groups according to the enamel moisture control and the sealant material used. After sealant application, the teeth were thermocycled and immersed in 1% methylene blue dye. Subsequently, the teeth were sectioned twice and the sections were examined using an optical microscope and image analysis software. Application of Embrace $Wetbond^{TM}$ on either dry or moist enamel resulted in more microleakage than $Clinpro^{TM}$. Application of Ultraseal $XT^{(R)}$ $hydro^{TM}$ on dry enamel showed a similar level of microleakage to $Clinpro^{TM}$, but application on moist enamel resulted in more microleakage. There were no significant differences between the groups in penetration. In conclusion, application of hydrophilic sealants on moist enamel did not improve the sealing ability and showed lower sealing ability than that of $Clinpro^{TM}$ applied on dry enamel.

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.

Effects of Hydrophilic Surface Treatment on Evaporation Heat Transfer at the Outside Wall of Horizontal Tubes (친수성 표면처리가 수평관 외벽의 증발열전달에 미치는 영향)

  • 박노성;황규대;강병하;정진택
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.5
    • /
    • pp.525-532
    • /
    • 2000
  • Evaporation heat transfer characteristics have been investigated experimentally when distilled water is sprayed on the outside wall of horizontal tubes in a evaporator. This problem is of particular interest in the design of evaporator of an absorption system. Hydrophilic surface treatment was employed to increase the wettability on copper tubes. The results indicate that evaporation heat transfer with hydrophilic tubes is shown to be 25-44% higher than that with bare tubes at evaporation pressure of 31.8 Torr(evaporation temperature$ 30^{\circ}C). Evaporation heat transfer rates of hydrophilic treatment tubes are improved substantially, comparing with those of conventional copper tubes in the wide range of operating parameters, such as water inlet temperatures, water mass flow rates and evaporation pressures.

  • PDF

A Study of Frost Formation on Different Hydrophilic Surfaces (다른 친수성능을 가진 두 표면에서의 착상에 관한 연구)

  • 김철환;신종민;하삼철
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.519-524
    • /
    • 2002
  • An experimental study has been conducted to investigate the effects of surface energy on frost formation. Test samples with two different surfaces are installed in a wind tunnel and exposed to a humid airflow. Dynamic contact angles (DCA) for these surfaces are $23^{\circ}\;and\;88^{\circ}$, respectively. The thickness and the mass of frost layer are measured and used to calculate the frost density while frost formation is visualized simultaneously with their measurements. Results show that frost density increases as time increases at specific test conditions. The air Reynolds number, the airflow humidity and the cold plate temperature are maintained at 12,000, 0.0042 kg/kg and $-21^{\circ}C$, respectively. The surface with a lower DCA shows a higher frost density during two-hour test, but no differences in the frost density have been found after two hours of frost generation. Empirical correlations for thickness, mass and density are assumed to be the functions of the test time and DCA.