• Title/Summary/Keyword: 치환 페놀

Search Result 39, Processing Time 0.023 seconds

Modification of Indophenol Reaction for Quantification of Reduction Activity of Nanoscale Zero Valent Iron (나노 영가철 환원 반응성의 정량 분석을 위한 수정된 인도페놀법 적용)

  • Hwang, Yuhoon;Lee, Wontae;Andersen, Henrik R.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.12
    • /
    • pp.667-675
    • /
    • 2016
  • Nanoscale zero-valent iron (nZVI) has been effectively applied for environmental remediation due to its ability to reduce various toxic compounds. However, quantification of nZVI reactivity has not yet been standardized. Here, we adapted colorimetric assays for determining reductive activity of nZVIs. A modified indophenol method was suggested to determine reducing activity of nZVI. The method was originally developed to determine aqueous ammonia concentration, but it was further modified to quantify phenol and aniline. The assay focused on analysis of reduction products rather than its mother compounds, which gave more accurate quantification of reductive activity. The suggested color assay showed superior selectivity toward reduction products, phenol or aniline, in the presence of mother compounds, 4-chlorophenol or nitrobenzene. Reaction conditions, such as reagent concentration and reaction time, were optimized to maximize sensitivity. Additionally, pretreatment step using $Na_2CO_3$ was suggested to eliminate the interference of residual iron ions. Monometallic nZVI and bimetallic Ni/Fe were investigated with the reaction. The substrates showed graduated reactivity, and thus, reduction potency and kinetics of different materials and reaction mechanism was distinguished. The colorimetric assay based on modified indophenol reaction can be promises to be a useful and simple tool in various nZVI related research topics.

Catalytic Hydrogen Transfer Reduction of Aromatic Nitro Compounds with 4-Vinylcyclohexene (4-비닐시클로헥센을 이용한 방향족 니트로 화합물의 환원반응)

  • Kim, Hong-Seok;Kim, Dong Il;Kim, Cheong-Sig;Joo, Young Je
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.871-877
    • /
    • 1994
  • Most of the aromatic nitro compounds were reduced to amines in high yield by transfer of hydrogen from 4-vinyl cyclohexene to the substrate via palladium catalyst. The usefulness of the method is not affected by the presence of a variety of other functional groups such as -OH, $-OCH_3$, $-CH_3$, $-CO_2H$, and -Cl, except for halogen which is removed during hydrogenation. The reduction of ortho-substituted nitrobenzene such as o-nitrotoluene, o-nitrophenol, o-nitroanisole was slower than the para isomer. Typically, the nitro compound is refluxed in ethanol with a large exess of 4-vinylcyclohexene in the presence of Pd-C catalyst. Under the above conditions, p-nitrobenzaldehyde, p-nitrobenzyl alcohol, and p-nitrobenzyl acetate were reduced to p-toluidine.

  • PDF

Study of the Separation and Elution Behavior of Phenols as Priority Pollutants in Reversed Phase Liquid Chromatography (역상 액체 크로마토그래피에서 유기오염물질로서의 페놀류들의 분리 및 용리거동에 관한 연구)

  • Dai Woon Lee;Sun Kyung Lee;Keun Sung Yook;Won Lee
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.287-294
    • /
    • 1989
  • The optimum condition for the separation of priority pollutant phenols using isocratic elution has been determined. The elution behavior of eleven phenols has been also studied to interpret the retention. The reversed phase liquid chromatographic methods were performed on a ${\mu}$-Bondapak $C_{18}$ column with methanol-water, acetonitrile-water, and THF water mixtures as mobile phases. The COF method, where Snyder's solvent triangle concept was combined with a mixture-design statistical technique, was used to optimize the strength and selectivity of solvents for the separation of phenols. The optimum solvent composition, which gives a complete separation of eleven phenols, was found to be $MeOH:ACN:H_2O$ = 7:40:53. The plots of ln k' vs. -${\Delta}H^{\circ}$ and ${\Sigma}{\pi}$ of phenols showed relatively good linearities. Effect of van der Waals volume, pi-energy and hydrogen bonding on the retention of phenols were investigated. The following equation with the correlation coefficient of 0.9927 for ACN-water solvent system was obtained; $log^{k'}=2.515{\times}10^{-2}VWV-1.301{\times}10^{-1}E-3.674{\times}10^{-1}$

  • PDF

Catalytic Reduction Efficiency Comparison between Porous Au, Pt, and Pd Nanoplates (요철형 금, 백금, 팔라듐 나노플레이트의 촉매성 환원 효율 비교)

  • Shin, Woojun;Kim, Young-Jin;Jang, Hongje;Park, Ji Hun;Kim, Young-Kwan
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.85-89
    • /
    • 2019
  • The size, morphology and composition of nanoparticles are regarded as the most important factors to the efficiency of catalytic reduction of various chemical compounds. In order to make a systematic comparison, gold, platinum and palladium nanoplates with 100 nm diameter with rough surface morphology were manufactured through the galvanic replacement reaction, and the reaction kinetics of the catalytic reduction of 4-nitrophenol and 4-nitroaniline was systematically analyzed by spectroscopic measurement. According to the observation, the catalytic reduction efficiency was significantly different against the constitutional elements in order of Pd > Au > Pt, and it was additionally influenced by the type of substrate.

Synthesis of New N2O Tridentate Ligands and Their Stability Constants of Transition Metal Complexes (새로운 N2O계 세 자리 리간드의 합성과 전이금속 착물 안정도상수)

  • Kim, Sun-Deuk;Park, Young-Sik
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.569-577
    • /
    • 2003
  • Ligands, Br-PEMP, Cl-PEMP and $CH_3O-PEMP$ having Br, Cl and $CH_3O$ substituents at 5-position of the $N_2O$ tridentate ligand, 2-[(2-pyridine-2-ethylamio)-methyl]-phenol (H-PEMP) containing pyridine and phenol were synthesized. Another ligand, Naph-PEMP having pyridine and 2-hydroxy-1-naphthalene was also synthesized. The ligands were characterized using elemental analysis, UV-visible, IR, $^1H\;NMR\;and\;^{13}C$ NMR spectroscopy and mass analysis. The potentiometric titration study in aqueous solution revealed that the proton dissociation of the ligands occurred in three steps and the order of overall proton dissociation constants (log${\beta}$) was $CH_3O-PEMP$ > Naph-PEMP > H-PEMP > Cl-PEMP > Br-PEMP. The order of stability constants (logML and log$ML_2$) of their transition metal complexes was Co(II) < Ni(II) < Cu(II) > Zn(II). The order in their stability constants values of each transition metal complex agreed well with that in overall proton dissociation constant value of the ligands.

Development of Mulberry-leaf Tea Containing γ-Aminobutyric Acid (GABA) by Anaerobic Treatments (무산소 처리에 의한 감마아미노뷰티르산(γ-Aminobutyric Acid) 함량이 높은 뽕잎차의 제조)

  • Lee, Seon-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.652-657
    • /
    • 2015
  • To produce mulberry-leaf tea abundant in ${\gamma}$-aminobutyric acid (GABA), mulberry leaves were subjected to two distinct anaerobic conditions ($N_2$ and vacuum) for 12 h before the manufacturing process. Subsequently, changes in the GABA content as well as that of other components were measured. In anaerobically treated mulberry leaves, GABA content markedly increased by 436-472% compared with the control, while the glutamic acid content decreased. However, few changes were observed in the contents of the general components (moisture, carbohydrate, lipid, protein, and ash) and water-soluble solids. Free sugar, catechin, and total phenol content decreased after anaerobic treatment. However, the sensory test scores were not different between the control and anaerobically-treated samples. Consequently, tea products, manufactured post nitrogen gas or vacuum treatment of leaves after harvest, showed functional properties without sensory loss.

Development of Bottom Ash Replacement Cement Using Diethanol Isopropanolamine (Diethanol Isopropanolamine을 활용한 바텀애시 치환 시멘트 개발)

  • Hyunuk Kang;Ahyeon Lim;Juhyuk Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.72-81
    • /
    • 2024
  • In this study, DEIPA was used for enhancing cementitious performance of bottom ash replaced cement. By applying the partial or no-known crystal structure method to X-ray diffraction data, the amounts of amorphous bottom ash and calcium silicate hydrate(C-S-H) could be separated and quantified. In the sample without DEIPA, the bottom ash hardly reacted, resulting in low compressive strength. However, the addition of DEIPA not only altered the hydration behavior of the cement but also enhanced the pozzolanic reaction between bottom ash and calcium hydroxide, leading to the generation of additional C-S-H. This resulted in high compressive strength not only in the early stages but also in the later stages. Therefore, with the addition of DEIPA during the pulverization of the bottom ash, the reactivity of the bottom ash was significantly improved. Hence, there is potential in the development of bottom ash replacement cement.