• 제목/요약/키워드: 치수 특성

검색결과 843건 처리시간 0.018초

도시 습지 자연생태계 변화 특성 및 관리방안 연구 - 서울시 둔촌동 생태·경관보전지역을 대상으로 - (A Study on the Characteristics of Ecosystem Change and Management in Urban Wetland - Focusing on the Dunchon-Dong Ecological and Scenery Conservation Area, Seoul -)

  • 한봉호;박석철;김종엽
    • 한국조경학회지
    • /
    • 제51권3호
    • /
    • pp.1-20
    • /
    • 2023
  • 본 연구는 둔촌동 생태·경관보전지역을 대상으로 습지 복원 전·후 생물다양성 변화를 모니터링하고, 주변 도시개발 변화에 맞는 습지 관리방안을 제시하고자 하였다. 이를 위해 대표 생물종을 정밀조사하고, 보전지역 및 주변 지역에서 발생하는 생태계 위협요인을 파악·분석하였다. 둔촌동 습지 주변 지역은 과거 산림과 논이었던 지역에 대규모 아파트단지가 조성되고, 일부 배후 산림은 남아있었다. 식물상 변화를 살펴보면, 복원 전 2000년에는 총 193종류이었다가 복원 후 2004년부터 2006년까지 종수가 줄었다가 2019년 현재 총 149종류로 다시 증가하였다. 복원 전·후 출현종을 비교한 결과, 숲 속 습한 습지지역에서 생육하는 왕비늘사초(Carex maximowiczii), 삿갓사초(Carex dispalata)와 습지 내 얕은 물이 유지되는 지역에서 생육하는 올챙이고랭이(Schoenoplectiella juncoides), 큰고랭이(Schoenoplectus tabernaemontani) 등 사초과 초본이 증가하였다. 습지 식생유형별 면적비율 변화를 분석한 결과 복원 이후 습지자생초본이 가장 높은 비율로 세력을 형성하였다. 습지자생초본의 세력 변화는 26.6%(2000) → 44.6%(2002) → 49.0%(2005) → 53.3%(2007) → 28.7%(2010) → 37.3%(2019)로 증가세를 보이다 2010년에 크게 감소 후 점차 확대되고 있다. 2010년 이후 변화는 습지 내 개방수면 확보와 담수지 내 유기물 제거를 위한 전면적인 식생관리가 원인인 것으로 판단된다. 습지자생목본은 복원 후 오리나무(Alnus japonica) 치수가 출현하여 세력을 1.6%(2005) → 6.3%(2007) → 14.8%(2010) → 21.9%(2019)로 계속 확대되고 있었다. 양서류는 2000년부터 2019년까지 모니터링 결과 도롱뇽(Hynobius leechii), 두꺼비(Bufo gargarizans), 맹꽁이(Kaloula borealis), 큰산개구리(Rana uenoi) 등 총 9종이다. 둔촌동 습지의 양서류는 귀화식물 및 자생식물 관리와 담수지 개방수면 확보를 통해 두꺼비, 도롱뇽, 큰산개구리 등 산림을 기반으로 하며 습지에서 서식하는 양서류가 증가한 것으로 판단된다. 야생조류 종다양도 지수는 복원 전 종다양도 지수는 2000년 0.9922, 복원 후 종다양도 지수는 2005년 1.2449, 2010년 1.2467, 2019년 2.2631로 복원 후 수치가 증가하였다. 둔촌동 생태·경관보전지역의 생태계 보전 관리는 둔촌주공 아파트 재건축 공사 영향 최소화, 습지 인접 무분별한 접근로 정비 및 습지 주 진입부 입구 정비를 제시하였다. 생태계 복원 관리에서는 공사 펜스 철거 시 체계적인 생태 복원 및 완충식재를 제시하였다.

폭발하중을 받는 콘크리트 구조물의 실험적 거동분석 : (II) 초고강도 콘크리트 및 RPC 슬래브의 실험결과 (Behavior Analysis of Concrete Structure under Blast Loading : (II) Blast Loading Response of Ultra High Strength Concrete and Reactive Powder Concrete Slabs)

  • 이나현;김성배;김장호;조윤구
    • 대한토목학회논문집
    • /
    • 제29권5A호
    • /
    • pp.565-575
    • /
    • 2009
  • 최근, 테러 및 전쟁과 관련된 폭발사고가 빈번히 발생하고 있으며, 특히 도심지에서는 이러한 폭발사고로 인해 인명피해 뿐 아니라 주요 시설물에도 큰 손상이 가해져 제2차, 3차의 피해가 발생하게 된다. 폭발사고에 대하여 인명 및 시설물을 안전하게 보호하기 위해서는 기본적으로 구조물에 가해지는 폭발하중 효과에 대한 이해가 필요하다. 폭발하중은 매우 빠른 시간 내에 콘크리트 구조물에 큰 압력으로 작용하는 하중이므로 변형률 속도와 구조물의 국부적인 손상을 고려하여 동적응답을 평가해야 한다. 일반적으로, 콘크리트는 다른 건설재료에 비해 상대적으로 높은 폭발저항성을 가진 재료이지만, 일반강도 콘크리트는 충격 및 폭발하중에 대하여 충분한 저항성능을 가지지 않는다. 그러므로 방호설계에서는 고에너지 흡수력과 높은 파괴저항성을 지니는 새로운 재료의 개발이 필요하다. 본 논문에서는 최근 활발하게 연구 중인 초고강도 콘크리트(UHSC)와 Reactive Powder Concrete(RPC)에 대한 방폭성능을 평가하고자 한다. UHSC와 RPC는 강도 및 성능향상, 부재의 치수 및 중량 감소, 내진저항성 향상과 같은 장점들로 인해 초고층건물 및 초장대교량에서 사용되어지고 있다. 또한 UHSC와 RPC는 9.11테러와 같은 테러 및 충격하중에 의한 사회주요시설물의 방호설계에 적용할 수 있다. 그러므로 본 연구에서는 폭발하중에 대한 UHSC 및 RPC 구조물의 거동을 파악하기 위하여 $1.0m{\times}1.0m{\times}150mm$의 슬래브 구조물 시편을 제작하여 폭발실험을 수행하였으며, 폭발파의 특성 뿐만 아니라 최대 및 잔류 변위와 철근과 콘크리트 표면에서 변형률을 측정하여 구조물의 거동을 분석하였다. 또한 손상 및 파괴모드를 각 시편별로 측정하였다. 본 실험을 통해 UHSC 및 RPC가 일반강도콘크리트에 비해 폭발저항성이 높은 것으로 분석되었다.

그물어구의 유수저항과 근형수칙 -1. 유수저항의 해석 및 평면 그물감의 자료에 의한 검토- (Flow Resistance and Modeling Rule of Fishing Nets -1. Analysis of Flow Resistance and Its Examination by Data on Plane Nettings-)

  • 김대안
    • 한국수산과학회지
    • /
    • 제28권2호
    • /
    • pp.183-193
    • /
    • 1995
  • 본 연구에서는 그물을 그것의 영역권 내로 물을 유입한 후 영역권 밖으로 투과시키는 하나의 유공성 구조물로 간주하고, 벽 면적이 S되는 그물이 유속 v에서 받는 저항 R을 $R=kSv^2$으로 취하여, 레이놀즈수를 $R_e$, 그물 입구의 단면적을 $S_m$, 흐름에 수직인 평면에 대한 그물의 총 투영면적을 $S_m$이라 할 때 저항계수 k를 $$k=c\;Re^{-m}(\frac{S_n}{S_m})n(\frac{S_n}{S})$$으로 표시한 후, 지금까지 행해진 평면 그물감에 대한 저항 실험 결과들을 이용하여 이 식의 타당성과 각계수 값을 함께 조사하였다. 조사 결과, 발의 지름이 d, 그물코의 크기가 21, 전개각이 $2\varphi$ 그물감의 $R_e$에 관한 대표치수를 그물코의 면적에 대한 발의 체적의 비 $\lambda$, 즉 $$\lambda={\frac{\pi\;d^2}{21\;sin\;2\varphi}$$로 택하였을 때, c와 m의 값은 각각 $240(kg\;\cdot\;sec^2/m^4)$ 및 0.1로 일정해졌고, n의 합은 1.2로서 1.0보다 컸기 때문에 매듭과 발에서 생기는 반류가 그물코 속으로의 물의 투과를 나쁘게 하여 저항을 증대시킨다는 것을 알 수 있었다. 반면, $R_e$가 커서 그 영향이 무시되는 경우는 $cR_e\;^{-m}$의 값이 상수가 되는데, 그 값은 흐름에 대한 그물감의 영각 $\theta$$ 45^{\circ}<\theta\leq90^{\circ}$의 구간에 있을 때 100$(kg\cdot sec^2/m^4)$으로 주어졌고, $ 0^{\circ}<\theta\leq45^{\circ}$의 구간에 있을 때는 후류의 영향 때문에 $100(S_m/S)^{0.6}\;(kg\cdot\;sec^2/m^4)$으로 주어 졌다. 그런데, 평면 그물감에 대 한 $S_m$$S_n$의 값은 각각 $$S_m=S\;sin\theta$$$$S_n=\frac{d}{I}\;\cdot\;\frac{\sqrt{1-cos^2\varphi cos^2\theta}} {sin\varphi\;cos\varphi} \cdot S$$로 주어지므로, 이들과 상기 c, m 및 n 값을 이용하면 평면 그물감의 저항계수 k가 구해지는데, $\theta=0^{\circ}$인 경우는 저항 특성 자체가 변하여 k가 그물감 표면의 조도에 따라 달라졌으므로 $$k=9(\frac{d}{I\;cos\varphi})^{0.8}$$으로 주어졌다. 그러나, 이상의 결과를 실제 그물에 적용할 때는 $\theta=0^{\circ}$ 때의 것은 고려하지 않아도 되고, 전기한 c 및 m 값도 불충분한 자료에 의한 것들이기 때문에 $R_e$의 영향이 무시되는 경우의 것만을 이용하면, 그물 각부의 $\theta$$45^{\circ}<\theta\leq90^{\circ}$의 구간 또는 $0^{\circ}<\theta\leq45^{\circ}$의 구간에 들어오는 그물의 저항계수 $k(kg\cdot sec^2/m^4)$$$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})$$ 또는 $$k=100(\frac{S_n}{S_m})^{1.2}\;(\frac{S_m}{S})^{1.6}$$으로 주어진다는 것을 알 수 있었다.

  • PDF