• Title/Summary/Keyword: 치사온도

Search Result 79, Processing Time 0.021 seconds

Modeling Methodology for Cold Tolerance Assessment of Pittosporum tobira (돈나무의 내한성 평가 모델링)

  • Kim, Inhea;Huh, Keun Young;Jung, Hyun Jong;Choi, Su Min;Park, Jae Hyoen
    • Horticultural Science & Technology
    • /
    • v.32 no.2
    • /
    • pp.241-251
    • /
    • 2014
  • This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was $-10^{\circ}C$ and the lethal was $-10^{\circ}C{\sim}-5^{\circ}C$. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.

Isolation of Conditional Lethal Temperature-sensitive Mutants of Bacillus sphaericus (Bacillus sphaericus의 치사감온성 돌연변이체의 분리)

  • Kim, Young Han;Lee, Hyung Hoan
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.41-49
    • /
    • 1985
  • Bacillus sphaericus was mutagenized with UV light irradiation and dimethyl sulfate. Thirty-five conditional lethal temperature-sensitive(ts) mutants were isolated at the nonpermissive temperature of $42^{\circ}C$ and classified into three groups by their growth characteristics on the nutrient broth, peptone glucose yeast extract agar and mineral salts agar. First was the lethal ts group, 24 mutants, which did not grow at the nonpermissive temperature, the second, 9 mutants, was the less growth is group whose growth was restricted to one-half, and the third, 2 mutants, was the cold lethal ts group whose growth was restricted at the permissive temperature($25^{\circ}C$and $30^{\circ}C$)

  • PDF

The Thermal Effects on the Mortalities in Several Marine Invertebrates in the Air (해산 무척추동물의 치사율에 대한 온도의 영향)

  • 이춘구;이정배
    • The Korean Journal of Zoology
    • /
    • v.8 no.2
    • /
    • pp.80-84
    • /
    • 1965
  • 본 실험은 몇 가지 해산 무척추동물, Crassostrea gigas (THUNBERG) , Musculus senhousia (BENSON), Adula atrata(LISCHKE), Littorina brevicula (PHILIPPI) 그리고 BALANUS amphitrite communis (DARWIN) 의 치사율에 대한 온도의 영향을 밝히고저 실시한 것이다. 1. 온도 35$^{\circ}C$와 -5$^{\circ}C$는 상기한 오종의 동물에 대하여 치명적이 아니었다. 2. 본 실험에서 오종의 치사율은 -2$0^{\circ}C$에서 가장 높았다. 3. 동일 온도일 경우 수중에서 보다는 공기 중에서 굴의 생존능력이 더 높았다. 4. 온도가 매우 높거나 낮지 않더라도 반복해서 처리하는 것은 해산 동물에 보다 치명적인 영향을 준다. 그 이유는 그들이 먼저 번의 상해를 회복할 만한 충분한 시간을 가질 수 없기 때문이다. 5. M.Senhousia 는 처음에는 B.amphitrite 보다 저항력이 강하지만 다음에는 B.amphitrite 보다 빨리 저항력을 잃는다. 6. 본 실험에서 얻은 치사율의 계열은 다음과 같다. M.senhousia > B.amphitrite> C.gigas> L.brevicula > A.atrata.

  • PDF

Determination of Heat Killing Temperature of Alfalfa (Medicago sativa L.) (알팔파(Medicago sativa L.)의 치사온도 결정)

  • 김기용;강경민;성병렬;김맹중;임용우;김원호;박근제;이병현
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.21-24
    • /
    • 2004
  • To determine lethal temperature of alfalfa (Medicago sativa L. cv Vernal) at heat-stressed conditions, seedlings grown in a small pots for 4 weeks were subjected to different temperature regimes of heat treatment. No apparent demage was observed when the plants were treated at 45, 50 or $60^{\circ}C$ for 1 h. Heat treatments at 60 and $65^{\circ}C$ for 1 h, several plants were withered and showed damage symptom on their leaves. When the plants were exposed to $70^{\circ}C$ for 1 h, most of leaves were severely withered, but it was not lethal conditions for the whole plants. By contrast, most of plants were died within one day after heat treatment at $80^{\circ}C$ for 1h. Furthermore, plants exposed to $80^{\circ}C$ for 50 min were also died within 7 days. It was found that new shoots were regenerated from the plants that had been treated at $80^{\circ}C$ within 45 min. These results indicate that heat treatment at $80^{\circ}C$ for 50 min is an optimum condition to distinguish the lethality of alfalfa plants. Simple viability assay system established in this study will be useful fer selection and characterization of heat-tolerant transgenic alfalfa plants.

Determination of Heat Killing Temperature of Orchardgrass(Dactylis glomerata L.) (오차드그라스 (Dactylis glomerata L.)의 치사온도 결정)

  • Kim, K.Y.;Kang, K.M.;Rim, Y.W.;Park, G.J.;Lim, Y.C.;Seo, S.;Son, D.Y.;Jo, J.K.
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.1
    • /
    • pp.25-28
    • /
    • 2004
  • To determine lethal temperature of orchardgrass (Dactylis glomerata L. cv. Janbeol 102) developed in Korea at heat-stressed conditions, seedlings grown in a amall pots for 4 weeks were treated at $45^{\circ}C$, $50^{\circ}C$ or $55^{\circ}C$ for 1 h. Heat treatments at $60^{\circ}C$ and $65^{\circ}C$ for 1 h, several plants were withered and showed damage symptom on their leaves. When the plants were exposed to $70^{\circ}C$ for 1 h, most of leaves were severely withered, but it was not lethal conditions for the whole plants. By contrast, most of plants were died within one day after heat treatment at $80^{\circ}C$ for 1h. Furthermore, plants exposed to $80^{\circ}C$ for 55 min were also died within 7 days. It was found that new shoots were regenerated from the plants that had been treated at $80^{\circ}C$ within 50 min. These results indicate that heat treatment at $80^{\circ}C$ for 55 min is an optimum condition to distinguish the lethality of orchardgrass plants. Simple viability assay system established in this study will be useful for selection and characterization of heat-tolerant transgenic orchardgrass plants.

Determination of Heat Killing Temperature of Birdsfoot trefoil and Italian ryegrass (버즈풋 트레포일 및 이탈리안 라이그라스의 치사온도 결정)

  • Kim, Ki-Yong;Choi, Young-Jin;Rim, Yong-Woo;Seong, Byung-Ryul;Lee, Sang-Jin;Yang, Joo-Sung;Hahn, Bum-Soo;Kim, Jong-Bum;Lee, Byung-Hyun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.4
    • /
    • pp.341-346
    • /
    • 2004
  • To determine lethal temperature of birdsfoot trefoil(BFT) and italian ryegrass(IRG) at heat-stressed conditions, seedlings grown in a small pots fur 4 weeks were subjected to different temperature regimes of heat treatment. No apparent damage was observed BFT and IRG were treated at 45, 50 or $60^{\circ}C$ for 1 h. And also heat treatments at 60, 65 and $70^{\circ}C$ for 1 h, both of them were withered and showed damage symptom on their leaves but it was not lethal conditions for the whole plants. By contrast, most of plants were prominently withered within one day after heat treatment at $80^{\circ}C/60min$. When BFT was exposed to $80^{\circ}C/60$ min, they were died within 6 days but there was found that new shoots were regenerated from the plants that had been treated at $80^{\circ}C$ within 55 min. IRC was also died within 2 days that exposed to $80^{\circ}C/20$ min but there was found that new shoots were regenerated from the plants that had been treated at $80^{\circ}C$ within 15 min. These results indicate that heat killing temperatures of BFT and IRG plants are $80^{\circ}C/60$ min an $80^{\circ}C/20$ min respectively. Simple viability assay system established in this study will be useful for selection and characterization of heat-tolerant transgenic BFT and IRG plants.