• Title/Summary/Keyword: 치료 선량 확인

Search Result 510, Processing Time 0.032 seconds

Feasibility of MatriXX for Intensity Modulated Radiation Therapy Quality Assurance (세기변조방사선치료의 품질관리를 위한 이온전리함 매트릭스의 유용성 고찰)

  • Kang, Min-Young;Kim, Yoen-Lae;Park, Byung-Moon;Bae, Yong-Ki;Bang, Dong-Wan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.91-97
    • /
    • 2007
  • Purpose: To evaluate the feasibility of a commercial ion chamber array for intensity modulated radiation therapy (IMRT) quality assurance (QA) was performed IMRT patient-specific QA Materials and Methods: A use of IMRT patient-specific QA was examined for nasopharyngeal patient by using 6MV photon beams. The MatriXX (Wellhofer Dosimetrie, Germany) was used for IMRT QA. The case of nasopharyngeal cancer was performed inverse treatment planning. A hybrid dose distribution made on the CT data of MatriXX and solid phantom all of the same gantry angle (0$^\circ$). The measurement was acquired with geometrical condition that equal to hybrid treatment planning. The $\gamma$-index (dose difference 3%, DTA 3 mm) histogram was used for quantitative analysis of dose discrepancies. An absolute dose was compared at the high dose low gradient region. Results: The dose distribution was shown a good agreement by gamma evaluation. A proportion of acceptance criteria was 95.8%, 97.52%, 96.28%, 98.20%, 97.78%, 96.64% and 92.70% for gantry angles were 0$^\circ$, 55$^\circ$, 110$^\circ$, 140$^\circ$, 220$^\circ$, 250$^\circ$ and 305$^\circ$, respectively. The absolute dose in high dose low gradient region was shown reasonable agreement with the RTP calculation within $\pm$3%. Conclusion: The MatriXX offers the dosimetric characteristics required for performing both relative and absolute measurements. If MatriXX use in the clinic, it could be simplified and reduced the IMRT patient-specific QA workload. Therefore, the MatriXX is evaluated as a reliable and convenient dosimeter for IMRT patient-specific QA.

  • PDF

Efficacy of Lens Shielding Device to Prevent Cataract with Radiotherapy for Orbit or Ocular Adnexal Tumor (안와 및 안부속기 종양의 방사선치료에서 백내장의 예방을 위한 렌즈보호 장치의 효용성)

  • Cho, Jung-Keun;Cho, Hyun-Sang;Han, Tae-Jong
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.12
    • /
    • pp.139-144
    • /
    • 2007
  • Radiotherapy which is the most effective for orbit lymphoma has been used increasingly due to the increase of orbit or ocular adnexal tumor patients. Curative effects and convalescence have been being more satisfied thanks to remarkable development of cancer chemotherapy and medical treatments, but side effects such as cataract, dry eye and retinopathy still break out. Thus, in this study, a Lens Shielding Device (LSD hereafter) was designed to prevent occurring of cataract due to radiation therapy for orbit lymphoma and its efficacy through dosimetry were evaluated. And in this paper, its manufacturing process was also explained. LSD is composed of a cover body covering the lens and a side fixing part supporting the cover body. To measure radiation, the patient therapy conditions were simulated and the measurement of the radiation was conducted with Thermo Luminescence Detector (TLD) and Markus chamber. The average TLD value was 5.7% and the TLD value and Markus chamber value were acquired as 4.2% and 5.1% respectively at 6 mm depth where zero lens center was located. Only 1.5Gy ($300Gy{\times}\;5%$) or 5% of total 30Gy with 9 MeV electron beam is estimated to affect on patient's lens. That is smaller dose than the threshold value of cataract (2GY) or the value (5Gy) that was reported to cause cataract in clinical conditions. Thus, these findings suggest that LSD be very useful for prevention of cataract during radiotherapy for malignant lymphoma of orbit and ocular adnexa. Furthermore, it might be possible to reduce patient's discomfort caused by alien substances and to make it easier to fix the device with customized manufacturing manners.

A Study on Accuracy and Usefulness of In-vivo Dosimetry in Proton Therapy (양성자 치료에서 생체 내 선량측정 검출기(In-vivo dosimety)의 정확성과 유용성에 관한 연구)

  • Kim, Sunyoung;Choi, Jaehyock;Won, Huisu;Hong, Joowan;Cho, Jaehwan;Lee, Sunyeob;Park, Cheolsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.171-180
    • /
    • 2014
  • In this study, the authors attempted to measure the skin dose by irradiating the actual dose on to the TLD(Thermo-Luminescence Dosimeter) and EBT3 Film used as the In-vivo dosimetry after planning the same treatment as the actual patient on a Phantom, because the erythema or dermatitis is frequently occurred on the patients' skin at the time of the proton therapy of medulloblastoma patient receiving the proton therapy. They intended to know whether there is the usefulness for the dosimetry of skin by the comparative analysis of the measured dose values with the treatment planned skin dose. The CT scan from the Brain to the Pelvis was done by placing a phantom on the CSI(Cranio-spinal irradiation) Set-up position of Medulloblastoma, and the treatment Isocenter point was aligned by using DIPS(Digital Image Positioning System) in the treatment room after planning a proton therapy. The treatment Isocenter point of 5 areas that the proton beam was entered into them, and Markers of 2 areas shown in the Phantom during CT scans, that is, in all 7 points, TLD and EBT3 Film pre-calibrated are alternatively attached, and the proton beam that the treatment was planned, was irradiated by 10 times, respectively. As a result of the comparative analysis of the average value calculated from the result values obtained by the repeated measurement of 10 times with the Skin Dose measured in the treatment planning system, the measured dose values of 6 points, except for one point that the accurate measurement was lacked due to the measurement position with a difficulty showed the distribution of the absolute dose value ${\pm}2%$ in both TLD and EBT Film. In conclusion, in this study, the clinical usefulness of the TLD and EBT3 Film for the Enterance skin dose measurement in the first proton therapy in Korea was confirmed.

Usefulness of Silicon Bolus Using 3D Printing of Head and Neck Patients (두경부 환자의 3D Printing을 이용한 Silicon Bolus의 유용성)

  • Kwon, Kyung-Tae;Lee, Yong-Ki;Won, Young-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.7
    • /
    • pp.909-916
    • /
    • 2019
  • Radiation therapy of oral and head and neck cancers often involves skin in the therapeutic range, and the use of bolus is frequently used. Dose irregularities provide dose uncertainty in patient application. In this study, the physical properties of patients with gel bolus, poly lactic acid (PLA), and silicon using 3D printing were fabricated. Dose uncertainties arising from the actual radiation dose delivery were measured. As a result, PLA bolus was stable in the Common irregularities. Silicon bolus may be useful for patients with severe irregularities or frequent changes in patient's body shape.

Evaluation of a colloid gel(Slime) as a body compensator for radiotherapy (Colloid gel(Slime)의 방사선 치료 시 표면 보상체로서의 유용성 평가)

  • Lee, Hun Hee;Kim, Chan Kyu;Song, Kwan Soo;Bang, Mun Kyun;Kang, Dong Yun;Sin, Dong Ho;Lee, Du Heon
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.191-199
    • /
    • 2018
  • Purpose : In this study, we evaluated the usefulness of colloid gel(slime) as a compensator for irregular patient surfaces in radiation therapy. Materials and Methods : For this study, colloid gel suitable for treatment was made and four experiments were conducted to evaluate the applicability of radiation therapy. Trilogy(Varian) and CT(SOMATOM, Siemens) were used as treatment equipment and CT equipment. First, the homogeneity according to the composition of colloid gel was measured using EBT3 Film(RIT). Second, the Hounsfield Unit(HU) value of colloid gel was measured and confirmed by CRIS phantom, Eclipse RTP(Eclipse 13.1, Varian) and CT. Third, to measure the deformation and degeneration of colloid gel during the treatment period, it was measured 3 times daily for 2 weeks using an ion chamber(PTW-30013, PTW). The fourth experiment was compared the treatment plan and measured dose distributions using bolus, rice, colloid gel and additional, dose profiles in an environment similar to actual treatment using our own acrylic phantom. Result : First experiment, density of the colloid gel cases 1, 2 and 3 was $1.02g/cm^3$, $0.99g/cm^3$ and $0.96g/cm^3$. When the homogeneity was measured at 6 MV and 9 MeV, case 1 was more homogeneous than the other cases, as 1.55 and 1.98. In the second experiment, the HU values of case 1, 2, 3 were 15 and when the treatment plan was compared with the measured doses, the difference was within 1 % at all 9, 12 MeV and a difference of -1.53 % and -1.56 % within the whole 2 % at 6 MV. In the third experiment, the dose change of colloid gel was measured to be about 1 % for 2 weeks. In the fourth experiment, the dose difference between the treatment plan and EBT3 film was similar for both colloid gel and bolus, rice at 6 MV. But colloid gel showed less dose difference than bolus and rice at 9 MeV. Also, dose profile of colloid gel showed a more uniform dose distribution than the bolus and rice. Conclusion : In this study, the density of colloid gel prepared for radiation therapy was $1.02g/cm^3$ similar to the density of water, and alteration or deformation was not observed during the radiotherapy process. Although we pay attention to the density when manufacturing colloid gel, it is sufficient in that it can deliver the dose uniformly through the compensation of the patient's body surface more than the bolus and rice, and can be manufactured at low cost. Further studies and studies for clinical applications are expected to be applicable to radiation therapy.

  • PDF

KFDA TLD Dose Quality Audit and Measurement Uncertainty (식품의약품안전청의 치료방사선 선량보증과 측정불확도)

  • Jeong, Hee-Kyo;Lee, Hyun-Ku;Kim, Gwe-Ya;Yang, Hyun-Kyu;Lim, Chun-Il
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.153-156
    • /
    • 2004
  • Korea Food and Drug Administration(KFDA) has peformed the calibration of therapy level dosimeters for Co-60 radiation since 1979. The reference standard ionization chamber has been calibrated at BIPM in France. The uncertainty on the KFDA calibration coefficients is 0.9 %(k=2) for air kerma and absorbed dose to water. Since 1999 a national quality audit program for ensuring dosimetry accuracy in Korea radiotherapy centers has been performed by the KFDA. The uncertainty associated with the determination of the absorbed dose to water from the TLD readings for high energy x-ray is 1.6 %(k=1). The correction factors for energy, non-linearity dose response, and TLD holder are used in the dose determination. Agreement between the user stated dose and KFDA measured dose within ${\pm}$ 5 % is considered acceptable. KFDA TLD postal dose quality audit program was peformed for 71 beam qualities of 53 domestic radiotherapy centers in 2003. The results for quality assurance showed that 63 out of 71 beam qualifies (89 %) satisfied the acceptance limit. The second audit was carried out for the centers outside the limit and ail of them have been corrected.

  • PDF

The Study of Dose Distribution according to the Using Linac and Tomotherapy on Total Lymphnode Irradiation (선형가속기와 토모치료기를 이용한 전림프계의 방사선 치료시 선량분포에 관한 연구)

  • Kim, Youngjae;Seol, Gwanguk
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.4
    • /
    • pp.285-291
    • /
    • 2013
  • In this study, compare and analyze the dose distribution and availability of radiation therapy when using a different devices to TNI(Total Lymphnodal Irradiation). Test subjects(patients) are 15 people(Male 7, Female 8). Acquire CT Simulation images of the 15 people using Somatom Sansation Open 16 channel and then acquired images was transferred to each treatment planning system Pinnacle Ver 8.0 and Tomotherapy Planning System and separate the tumor tissue and normal tissues(whole lung, spinal cord, Rt kidney, Lt kidney). Tumor prescription dose was set to 750 cGy. and then Compare the Dose Compatibility, Normal Tissue's Absorbed Dose, Dose Distribution and DVH. Statistical analysis was performed SPSS Ver. 18.0 by paired sample Assay. The absorbed dose in the tumor tissue was $751.0{\pm}4.7cGy$ in tomotherapy planning, $746.9{\pm}14.1cGy$ in linac. Tomotherapy's absorbed dose in the tumor was more appropriate than linac. and These values are not statistically significant(p>0.05). Tomotherapy plan's absorbed dose in the normal tissues were less than linac's plan. This value was statistically significant(p<0.05) excepted of whole lung. In DVH, appropriated on tumor and normal tissues in tomotherapy and linac but tomotherapy's TER was better than linac. Namely, a result of Absorbed dose in tumor and normal tissue, Dose distribution pattern, DVH, Both radiation therapy devices were appropriated in radiation therapy on TER. The Linac has a short treatment time(about 15-20 min) and open space on treatment time. It cause infant and pediatric patients to receiving uncomfortable treatment. So, In this case, it will be fine that Linac based therapy was restricted use. and if the patient was cooperative, it will be show a better prognosis that Tomotherapy using Radiation Therapy.

Comparison of Beam Transfer Methods between Tomo Therapy and Proton Therapy for Prostate Cancer Radiation Therapy (전립선암 방사선 치료 시 토모치료와 양성자치료 빔 전달방식 비교)

  • Park, Jung Min;Ko, Eun Seo;Lee, Jin Hee;Kim, Jin Won;Yang, Jin Ho;Kwon, Kyung Tae
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.2
    • /
    • pp.75-81
    • /
    • 2019
  • Purpose: Tomo therapy and Proton therapy treatment plans for the treatment of prostate cancer patients were established, and the characteristics of dose distribution according to beam delivery method using Tomo therapy IMRT method and Proton therapy PBS method to compare and analyze the treatment effect were sought. Materials and Methods: Tomo IMRT treatment plan and Proton PBS treatment plan were established using the Hi.art planning station 5.1.1.6 of Tomo therapy and Eclipse 13.7 of VARIAN for three prostate cancer patients who were treated with radiotherapy only for radical purposes without surgery. For the evaluation of two treatment plans, the average dose (Dmean) and maximum dose (Dmax) of PGTV were calculated from dose volume histogram (DVH) to confirm the coverage and calculate CI and HI. In OAR evaluation, the dose received from the rectal volume 25% and the dose received from the bladder were evaluated to compare the normal long-term protection effect. Results: The mean maximum doses of the three patients were 71.4Gy, 75.3Gy and the mean doses were 70.4Gy and 72.8Gy in the DVH of the Tomo IMRT and Proton PBS. The CI was 1.16 and 1.31, and the HI was 0.04 and 0.12 respectively, and the Tomo IMRT was superior to the Proton PBS in dose suitability. Conclusion: The mean dose of PGTV in prostate cancer patients was 3.4% higher in Proton PBS than in Tomo IMRT. This is because the Dose suitability of Tomo IMRT was better, but it is considered to be a small difference to be seen as a significant result. However, the results of the two methods were 51.2% in D 25% and 55.7% less in the average dose of bladder, which could reduce the side effects of patients in proton PBS.

Analysis of dosimetric leaf gap variation on dose rate variation for dynamic IMRT (동적 세기조절방사선 치료 시 선량률 변화에 따른 선량학적엽간격 변화 분석)

  • Yang, Myung Sic;Park, Ju Kyeong;Lee, Seung Hun;Kim, Yang Su;Lee, Sun Young;Cha, Seok Yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.47-55
    • /
    • 2016
  • To evaluate the position accuracy of the MLC. This study analyzed the variations of the dosimetric leaf gap(DLG) and MLC transmission factor to reflect the location of the MLC leaves according to the dose rate variation for dynamic IMRT. We used the 6 MV and 10 MV X-ray beams from linear accelerator with a Millennium 120 MLC system. We measured the variation of DLG and MLC transmission factor at depth of 10 cm for the water phantom by varying the dose rate to 200, 300, 400, 500 and 600 MU/min using the CC13 and FC-65G chambers. For 6 MV X-ray beam, a result of measuring based on a dose rate 400 MU/min by varying the dose rate to 200, 300, 400, 500 and 600 MU/min of the difference rate was respectively -2.59, -1.89, 0.00, -0.58, -2.89%. For 10 MV X-ray beam, the difference rate was respectively ?2.52, -1.69, 0.00, +1.28, -1.98%. The difference rate of MLC transmission factor was in the range of about ${\pm}1%$ of the measured values at the two types of energy and all of the dose rates. This study evaluated the variation of DLG and MLC transmission factor for the dose rate variation for dynamic IMRT. The difference of the MLC transmission factor according to the dose rate variation is negligible, but, the difference of the DLG was found to be large. Therefore, when randomly changing the dose rate dynamic IMRT, it may significantly affect the dose delivered to the tumor. Unless you change the dose rate during dynamic IMRT, it is thought that is to be the more accurate radiation therapy.

  • PDF

Evaluation of Dose Distributions Recalculated with Per-field Measurement Data under the Condition of Respiratory Motion during IMRT for Liver Cancer (간암 환자의 세기조절방사선치료 시 호흡에 의한 움직임 조건에서 측정된 조사면 별 선량결과를 기반으로 재계산한 체내 선량분포 평가)

  • Song, Ju-Young;Kim, Yong-Hyeob;Jeong, Jae-Uk;Yoon, Mee Sun;Ahn, Sung-Ja;Chung, Woong-Ki;Nam, Taek-Keun
    • Progress in Medical Physics
    • /
    • v.25 no.2
    • /
    • pp.79-88
    • /
    • 2014
  • The dose distributions within the real volumes of tumor targets and critical organs during internal target volume-based intensity-modulated radiation therapy (ITV-IMRT) for liver cancer were recalculated by applying the effects of actual respiratory organ motion, and the dosimetric features were analyzed through comparison with gating IMRT (Gate-IMRT) plan results. The ITV was created using MIM software, and a moving phantom was used to simulate respiratory motion. The doses were recalculated with a 3 dose-volume histogram (3DVH) program based on the per-field data measured with a MapCHECK2 2-dimensional diode detector array. Although a sufficient prescription dose covered the PTV during ITV-IMRT delivery, the dose homogeneity in the PTV was inferior to that with the Gate-IMRT plan. We confirmed that there were higher doses to the organs-at-risk (OARs) with ITV-IMRT, as expected when using an enlarged field, but the increased dose to the spinal cord was not significant and the increased doses to the liver and kidney could be considered as minor when the reinforced constraints were applied during IMRT plan optimization. Because the Gate-IMRT method also has disadvantages such as unsuspected dosimetric variations when applying the gating system and an increased treatment time, it is better to perform a prior analysis of the patient's respiratory condition and the importance and fulfillment of the IMRT plan dose constraints in order to select an optimal IMRT method with which to correct the respiratory organ motional effect.