• Title/Summary/Keyword: 치료계획장치

Search Result 203, Processing Time 0.032 seconds

Quality Assurance of CORVUS Planning System for Intensity Modulated Radiation Therapy (CORVUS Planning System을 사용한 세기조절방사선치료의 정도관리에 관한 연구)

  • 김성규
    • Progress in Medical Physics
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • The intensity modulated radiation therapy (IMRT) is believed to be on of the best treatment techniques for the goal of radiation therapy: to irradiate fatal dose to tumor region while minimizing dose to critical organs. It is essential to have comprehensive quality assurance program to assure the precision and the accuracy of the treatment due to the characteristic of the IMRT. The quality assurance technique for the Corvus treatment planning system was developed and its effectiveness was tested with the treatment planning of H&N region. Acrylic phantom, film and ionization chamber were used for this study, the discrepancy between the treatment planning and the film measurements showed 0.03 cm and 0.28 cm for the 90% of isodose line in each directions. Dose measurements showed 1% and 1.2% differences for ionization chamber and TLD, respectively. This concluded that the system can be used for clinic.

  • PDF

A Feasibility Study on Using Neural Network for Dose Calculation in Radiation Treatment (방사선 치료 선량 계산을 위한 신경회로망의 적용 타당성)

  • Lee, Sang Kyung;Kim, Yong Nam;Kim, Soo Kon
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.1
    • /
    • pp.55-64
    • /
    • 2015
  • Dose calculations which are a crucial requirement for radiotherapy treatment planning systems require accuracy and rapid calculations. The conventional radiotherapy treatment planning dose algorithms are rapid but lack precision. Monte Carlo methods are time consuming but the most accurate. The new combined system that Monte Carlo methods calculate part of interesting domain and the rest is calculated by neural can calculate the dose distribution rapidly and accurately. The preliminary study showed that neural networks can map functions which contain discontinuous points and inflection points which the dose distributions in inhomogeneous media also have. Performance results between scaled conjugated gradient algorithm and Levenberg-Marquardt algorithm which are used for training the neural network with a different number of neurons were compared. Finally, the dose distributions of homogeneous phantom calculated by a commercialized treatment planning system were used as training data of the neural network. In the case of homogeneous phantom;the mean squared error of percent depth dose was 0.00214. Further works are programmed to develop the neural network model for 3-dimensinal dose calculations in homogeneous phantoms and inhomogeneous phantoms.

TREATMENT OF SELF-INJURIOUS BEHAVIOR WITH INTRAORAL APPLIANCE IN EPILEPSY PATIENTS (가철식 장치를 이용한 구강조직 자해 환자의 치료)

  • Kim, Ik-Hwan;Lee, Ko-Eun;Lee, Jae-Ho;Kang, Chung-Min
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.12 no.1
    • /
    • pp.16-19
    • /
    • 2016
  • Oral self-injurious behavior (SIB) can be defined as the intentional, direct injuring of oral tissue, most often done without conscious suicidal intent and most commonly associated with tongue or lip biting. Chronic biting of oral mucosa is an innocuous self inflicted injury, commonly seen in children suffering from developmental and psychological problems. The cases presented in this report discuss oral SIB due to epilepsy, quadriplegia and their treatments. This report documents a successful self-injurious behavior treatment of epilepsy patients within a short time by applying a removable intraoral device. Clinicians should notice the possibility of oral SIB in various disorders. Moreover, different treatment should be performed according to the causative disorders and symptoms.

Reproducibility evaluation of the use of pressure conserving abdominal compressor in lung and liver volumetric modulated arc therapy (흉복부 방사선 치료 시 압력 기반 복부압박장치 적용에 따른 치료 간 재현성 평가)

  • Park, ga yeon;Kim, joo ho;Shin, hyun kyung;Kim, min soo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.71-78
    • /
    • 2021
  • Purpose: To evaluate the inter-fractional position and respiratory reproducibility of lung and liver tumors using pressure conserving type(P-type) abdominal compressor in volumetric modulated arc therapy(VMAT). Materials and methods: Six lung cancer patients and three liver cancer patients who underwent VMAT using a P-type abdominal compressor were included in this study. Cone-beam computed tomography(CBCT) images were acquired before each treatment and compared with planning CT images to evaluate the inter-fractional position reproducibility. The position variation was defined as the difference of position shift values between target matching and bone matching. 4-dimensional cone-beam computed tomography(4D CBCT) images were acquired weekly before treatment and compared with planning 4DCT images to evaluate the inter-fractional respiratory reproducibility. The respiratory variation was calculated by the magnitude of excursions by breathing. Results: The mean ± standard deviation(SD) of overall position variation values, 3D vector in the three translational directions were 1.1 ± 1.4 mm and 4.5 ± 2.8 mm for the lung and liver, respectively. The mean ± SD of respiratory variation values were 0.7 ± 3.4 mm (p = 0.195) in the lung and 3.6 ± 2.6 mm (p < 0.05) in the liver. Conclusion: The use of P-type compressor in lung and liver VMAT was effective for stable control of inter-fractional position and respiratory variation by reproduction of abdominal compression. Appropriate PTV margin must be considered in treatment planning, and image guidance before each treatment are required in order to obtain more stable reproducibility

Evaluation of Real-time Measurement Liver Tumor's Movement and $Synchrony^{TM}$ System's Accuracy of Radiosurgery using a Robot CyberKnife (로봇사이버나이프를 이용한 간 종양의 실시간 움직임 측정과 방사선수술 시 호흡추적장치의 정확성 평가)

  • Kim, Gha-Jung;Shim, Su-Jung;Kim, Jeong-Ho;Min, Chul-Kee;Chung, Weon-Kuu
    • Radiation Oncology Journal
    • /
    • v.26 no.4
    • /
    • pp.263-270
    • /
    • 2008
  • Purpose: This study aimed to quantitatively measure the movement of tumors in real-time and evaluate the treatment accuracy, during the treatment of a liver tumor patient, who underwent radiosurgery with a Synchrony Respiratory motion tracking system of a robot CyberKnife. Materials and Methods: The study subjects included 24 liver tumor patients who underwent CyberKnife treatment, which included 64 times of treatment with the Synchrony Respiratory motion tracking system ($Synchrony^{TM}$). The treatment involved inserting 4 to 6 acupuncture needles into the vicinity of the liver tumor in all the patients using ultrasonography as a guide. A treatment plan was set up using the CT images for treatment planning uses. The position of the acupuncture needle was identified for every treatment time by Digitally Reconstructed Radiography (DRR) prepared at the time of treatment planning and X-ray images photographed in real-time. Subsequent results were stored through a Motion Tracking System (MTS) using the Mtsmain.log treatment file. In this way, movement of the tumor was measured. Besides, the accuracy of radiosurgery using CyberKnife was evaluated by the correlation errors between the real-time positions of the acupuncture needles and the predicted coordinates. Results: The maximum and the average translational movement of the liver tumor were measured 23.5 mm and $13.9{\pm}5.5\;mm$, respectively from the superior to the inferior direction, 3.9 mm and $1.9{\pm}0.9mm$, respectively from left to right, and 8.3 mm and $4.9{\pm}1.9\;mm$, respectively from the anterior to the posterior direction. The maximum and the average rotational movement of the liver tumor were measured to be $3.3^{\circ}$ and $2.6{\pm}1.3^{\circ}$, respectively for X (Left-Right) axis rotation, $4.8^{\circ}$ and $2.3{\pm}1.0^{\circ}$, respectively for Y (Crania-Caudal) axis rotation, $3.9^{\circ}$ and $2.8{\pm}1.1^{\circ}$, respectively for Z (Anterior-Posterior) axis rotation. In addition, the average correlation error, which represents the treatment's accuracy was $1.1{\pm}0.7\;mm$. Conclusion: In this study real-time movement of a liver tumor during the radiosurgery could be verified quantitatively and the accuracy of the radiosurgery with the Synchrony Respiratory motion tracking system of robot could be evaluated. On this basis, the decision of treatment volume in radiosurgery or conventional radiotherapy and useful information on the movement of liver tumor are supposed to be provided.

A study of the plan dosimetic evaluation on the rectal cancer treatment (직장암 치료 시 치료계획에 따른 선량평가 연구)

  • Jeong, Hyun Hak;An, Beom Seok;Kim, Dae Il;Lee, Yang Hoon;Lee, Je hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.2
    • /
    • pp.171-178
    • /
    • 2016
  • Purpose : In order to minimize the dose of femoral head as an appropriate treatment plan for rectal cancer radiation therapy, we compare and evaluate the usefulness of 3-field 3D conformal radiation therapy(below 3fCRT), which is a universal treatment method, and 5-field 3D conformal radiation therapy(below 5fCRT), and Volumetric Modulated Arc Therapy (VMAT). Materials and Methods : The 10 cases of rectal cancer that treated with 21EX were enrolled. Those cases were planned by Eclipse(Ver. 10.0.42, Varian, USA), PRO3(Progressive Resolution Optimizer 10.0.28) and AAA(Anisotropic Analytic Algorithm Ver. 10.0.28). 3fCRT and 5fCRT plan has $0^{\circ}$, $270^{\circ}$, $90^{\circ}$ and $0^{\circ}$, $95^{\circ}$, $45^{\circ}$, $315^{\circ}$, $265^{\circ}$ gantry angle, respectively. VMAT plan parameters consisted of 15MV coplanar $360^{\circ}$ 1 arac. Treatment prescription was employed delivering 54Gy to recum in 30 fractions. To minimize the dose difference that shows up randomly on optimizing, VMAT plans were optimized and calculated twice, and normalized to the target V100%=95%. The indexes of evaluation are D of Both femoral head and aceta fossa, total MU, H.I.(Homogeneity index) and C.I.(Conformity index) of the PTV. All VMAT plans were verified by gamma test with portal dosimetry using EPID. Results : D of Rt. femoral head was 53.08 Gy, 50.27 Gy, and 30.92 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. D of Rt. aceta fossa was 54.86 Gy, 52.40 Gy, 30.37 Gy, respectively, in the order of 3fCRT, 5fCRT, and VMAT treatment plan. Likewise, Lt. Femoral head showed average 53.68 Gy, 51.01 Gy and 29.23 Gy in the same order. The maximum dose of both femoral head and aceta fossa was higher in the order of 3fCRT, 5fCRT, and VMAT treatment plan. C.I. showed the lowest VMAT treatment plan with an average of 1.64, 1.48, and 0.99 in the order of 3fCRT, 5fCRT, and VMAT treatment plan. There was no significant difference on H.I. of the PTV among three plans. Total MU showed that the VMAT treatment plan used 124.4MU and 299MU more than the 3fCRT and 5fCRT treatment plan, respectively. IMRT verification gamma test results for the VMAT plan passed over 90.0% at 2mm/2%. Conclusion : In rectal cancer treatment, the VMAT plan was shown to be advantageous in most of the evaluation indexes compared to the 3D plan, and the dose of the femoral head was greatly reduced. However, because of practical limitations there may be a case where it is difficult to select a VMAT treatment plan. 5fCRT has the advantage of reducing the dose of the femoral head as compared to the existing 3fCRT, without regard to additional problems. Therefore, not only would it extend survival time but the quality of life in general, if hospitals improved radiation therapy efficiency by selecting the treatment plan in accordance with the hospital's situation.

  • PDF

Development of Conformal Radiotherapy with Respiratory Gate Device (호흡주기에 따른 방사선입체조형치료법의 개발)

  • Chu Sung Sil;Cho Kwang Hwan;Lee Chang Geol;Suh Chang Ok
    • Radiation Oncology Journal
    • /
    • v.20 no.1
    • /
    • pp.41-52
    • /
    • 2002
  • Purpose : 3D conformal radiotherapy, the optimum dose delivered to the tumor and provided the risk of normal tissue unless marginal miss, was restricted by organ motion. For tumors in the thorax and abdomen, the planning target volume (PTV) is decided including the margin for movement of tumor volumes during treatment due to patients breathing. We designed the respiratory gating radiotherapy device (RGRD) for using during CT simulation, dose planning and beam delivery at identical breathing period conditions. Using RGRD, reducing the treatment margin for organ (thorax or abdomen) motion due to breathing and improve dose distribution for 3D conformal radiotherapy. Materials and Methods : The internal organ motion data for lung cancer patients were obtained by examining the diaphragm in the supine position to find the position dependency. We made a respiratory gating radiotherapy device (RGRD) that is composed of a strip band, drug sensor, micro switch, and a connected on-off switch in a LINAC control box. During same breathing period by RGRD, spiral CT scan, virtual simulation, and 3D dose planing for lung cancer patients were peformed, without an extended PTV margin for free breathing, and then the dose was delivered at the same positions. We calculated effective volumes and normal tissue complication probabilities (NTCP) using dose volume histograms for normal lung, and analyzed changes in doses associated with selected NTCP levels and tumor control probabilities (TCP) at these new dose levels. The effects of 3D conformal radiotherapy by RGRD were evaluated with DVH (Dose Volume Histogram), TCP, NTCP and dose statistics. Results : The average movement of a diaphragm was 1.5 cm in the supine position when patients breathed freely. Depending on the location of the tumor, the magnitude of the PTV margin needs to be extended from 1 cm to 3 cm, which can greatly increase normal tissue irradiation, and hence, results in increase of the normal tissue complications probabiliy. Simple and precise RGRD is very easy to setup on patients and is sensitive to length variation (+2 mm), it also delivers on-off information to patients and the LINAC machine. We evaluated the treatment plans of patients who had received conformal partial organ lung irradiation for the treatment of thorax malignancies. Using RGRD, the PTV margin by free breathing can be reduced about 2 cm for moving organs by breathing. TCP values are almost the same values $(4\~5\%\;increased)$ for lung cancer regardless of increasing the PTV margin to 2.0 cm but NTCP values are rapidly increased $(50\~70\%\;increased)$ for upon extending PTV margins by 2.0 cm. Conclusion : Internal organ motion due to breathing can be reduced effectively using our simple RGRD. This method can be used in clinical treatments to reduce organ motion induced margin, thereby reducing normal tissue irradiation. Using treatment planning software, the dose to normal tissues was analyzed by comparing dose statistics with and without RGRD. Potential benefits of radiotherapy derived from reduction or elimination of planning target volume (PTV) margins associated with patient breathing through the evaluation of the lung cancer patients treated with 3D conformal radiotherapy.

Comparison and evaluation of treatment plans using Abdominal compression and Continuous Positive Air Pressure for lung cancer SABR (폐암의 SABR(Stereotactic Ablative Radiotherapy)시 복부압박(Abdominal compression)과 CPAP(Continuous Positive Air Pressure)를 이용한 치료계획의 비교 및 평가)

  • Kim, Dae Ho;Son, Sang Jun;Mun, Jun Ki;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.35-46
    • /
    • 2021
  • Purpose : By comparing and analyzing treatment plans using abdominal compression and The Continuous Positive Air Pressure(CPAP) during SABR of lung cancer, we try to contribute to the improvement of radiotherapy effect. Materials & Methods : In two of the lung SABR patients(A, B patient), we developed a SABR plan using abdominal compression device(the Body Pro-Lok, BPL) and CPAP and analyze the treatment plan through homogeneity, conformity and the parameters proposed in RTOG 0813. Furthermore, for each phase, the X, Y, and Z axis movements centered on PTV are analyzed in all 4D CTs and compared by obtaining the volume and average dose of PTV and OAR. Four cone beam computed tomography(CBCT) were used to measure the directions from the center of the PTV to the intrathoracic contacts in three directions out of 0°, 90°, 180° and 270°, and compare the differences from the average distance values in each direction. Result : Both treatment plans obtained using BPL and CPAP followed recommendations from RTOG, and there was no significant difference in homogeneity and conformity. The X-axis, Y-axis, and Z-axis movements centered on PTV in patient A were 0.49 cm, 0.37 cm, 1.66 cm with BPL and 0.16 cm, 0.12 cm, and 0.19 cm with CPAP, in patient B were 0.22 cm, 0.18 cm, 1.03 cm with BPL and 0.14 cm, 0.11 cm, and 0.4 cm with CPAP. In A patient, when using CPAP compared to BPL, ITV decreased by 46.27% and left lung volume increased by 41.94%, and average dose decreased by 52.81% in the heart. In B patient, volume increased by 106.89% in the left lung and 87.32% in the right lung, with an average dose decreased by 44.30% in the stomach. The maximum difference of A patient between the straight distance value and the mean distance value in each direction was 0.05 cm in the a-direction, 0.05 cm in the b-direction, and 0.41 cm in the c-direction. In B patient, there was a difference of 0.19 cm in the d-direction, 0.49 cm in the e-direction, and 0.06 cm in the f-direction. Conclusion : We confirm that increased lung volume with CPAP can reduce doses of OAR near the target more effectively than with BPL, and also contribute more effectively to restriction of tumor movement with respiration. It is considered that radiation therapy effects can be improved through the application of various sites of CPAP and the combination with CPAP and other treatment machines.

Usefulness of Abdominal Compressor Using Stereotactic Body Radiotherapy with Hepatocellular Carcinoma Patients (토모테라피를 이용한 간암환자의 정위적 방사선치료시 복부압박장치의 유용성 평가)

  • Woo, Joong-Yeol;Kim, Joo-Ho;Kim, Joon-Won;Baek, Jong-Geal;Park, Kwang-Soon;Lee, Jong-Min;Son, Dong-Min;Lee, Sang-Kyoo;Jeon, Byeong-Chul;Cho, Jeong-Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.24 no.2
    • /
    • pp.157-165
    • /
    • 2012
  • Purpose: We evaluated usefulness of abdominal compressor for stereotactic body radiotherapy (SBRT) with unresectable hepatocellular carcinoma (HCC) patients and hepato-biliary cancer and metastatic liver cancer patients. Materials and Methods: From November 2011 to March 2012, we selected HCC patients who gained reduction of diaphragm movement >1 cm through abdominal compressor (diaphragm control, elekta, sweden) for HT (Hi-Art Tomotherapy, USA). We got planning computed tomography (CT) images and 4 dimensional (4D) images through 4D CT (somatom sensation, siemens, germany). The gross tumor volume (GTV) included a gross tumor and margins considering tumor movement. The planning target volume (PTV) included a 5 to 7 mm safety margin around GTV. We classified patients into two groups according to distance between tumor and organs at risk (OAR, stomach, duodenum, bowel). Patients with the distance more than 1 cm are classified as the 1st group and they received SBRT of 4 or 5 fractions. Patients with the distance less than 1 cm are classified as the 2nd group and they received tomotherapy of 20 fractions. Megavoltage computed tomography (MVCT) were performed 4 or 10 fractions. When we verify a MVCT fusion considering priority to liver than bone-technique. We sent MVCT images to Mim_vista (Mimsoftware, ver .5.4. USA) and we re-delineated stomach, duodenum and bowel to bowel_organ and delineated liver. First, we analyzed MVCT images to check the setup variation. Second we compared dose difference between tumor and OAR based on adaptive dose through adaptive planning station and Mim_vista. Results: Average setup variation from MVCT was $-0.66{\pm}1.53$ mm (left-right) $0.39{\pm}4.17$ mm (superior-inferior), $0.71{\pm}1.74$ mm (anterior-posterior), $-0.18{\pm}0.30$ degrees (roll). 1st group ($d{\geq}1$) and 2nd group (d<1) were similar to setup variation. 1st group ($d{\geq}1$) of $V_{diff3%}$ (volume of 3% difference of dose) of GTV through adaptive planing station was $0.78{\pm}0.05%$, PTV was $9.97{\pm}3.62%$, $V_{diff5%}$ was GTV 0.0%, PTV was $2.9{\pm}0.95%$, maximum dose difference rate of bowel_organ was $-6.85{\pm}1.11%$. 2nd Group (d<1) GTV of $V_{diff3%}$ was $1.62{\pm}0.55%$, PTV was $8.61{\pm}2.01%$, $V_{diff5%}$ of GTV was 0.0%, PTV was $5.33{\pm}2.32%$, maximum dose difference rate of bowel_organ was $28.33{\pm}24.41%$. Conclusion: Despite we saw diaphragm movement more than 5 mm with flouroscopy after use an abdominal compressor, average setup_variation from MVCT was less than 5 mm. Therefore, we could estimate the range of setup_error within a 5 mm. Target's dose difference rate of 1st group ($d{\geq}1$) and 2nd group (d<1) were similar, while 1st group ($d{\geq}1$) and 2nd group (d<1)'s bowel_organ's maximum dose difference rate's maximum difference was more than 35%, 1st group ($d{\geq}1$)'s bowel_organ's maximum dose difference rate was smaller than 2nd group (d<1). When applicating SBRT to HCC, abdominal compressor is useful to control diaphragm movement in selected patients with more than 1 cm bowel_organ distance.

  • PDF

Dose Verification Study of Brachytherapy Plans Using Monte Carlo Methods and CT Images (CT 영상 및 몬테칼로 계산에 기반한 근접 방사선치료계획의 선량분포 평가 방법 연구)

  • Cheong, Kwang-Ho;Lee, Me-Yeon;Kang, Sei-Kwon;Bae, Hoon-Sik;Park, So-Ah;Kim, Kyoung-Joo;Hwang, Tae-Jin;Oh, Do-Hoon
    • Progress in Medical Physics
    • /
    • v.21 no.3
    • /
    • pp.253-260
    • /
    • 2010
  • Most brachytherapy treatment planning systems employ a dosimetry formalism based on the AAPM TG-43 report which does not appropriately consider tissue heterogeneity. In this study we aimed to set up a simple Monte Carlo-based intracavitary high-dose-rate brachytherapy (IC-HDRB) plan verification platform, focusing particularly on the robustness of the direct Monte Carlo dose calculation using material and density information derived from CT images. CT images of slab phantoms and a uterine cervical cancer patient were used for brachytherapy plans based on the Plato (Nucletron, Netherlands) brachytherapy planning system. Monte Carlo simulations were implemented using the parameters from the Plato system and compared with the EBT film dosimetry and conventional dose computations. EGSnrc based DOSXYZnrc code was used for Monte Carlo simulations. Each $^{192}Ir$ source of the afterloader was approximately modeled as a parallel-piped shape inside the converted CT data set whose voxel size was $2{\times}2{\times}2\;mm^3$. Bracytherapy dose calculations based on the TG-43 showed good agreement with the Monte Carlo results in a homogeneous media whose density was close to water, but there were significant errors in high-density materials. For a patient case, A and B point dose differences were less than 3%, while the mean dose discrepancy was as much as 5%. Conventional dose computation methods might underdose the targets by not accounting for the effects of high-density materials. The proposed platform was shown to be feasible and to have good dose calculation accuracy. One should be careful when confirming the plan using a conventional brachytherapy dose computation method, and moreover, an independent dose verification system as developed in this study might be helpful.