• Title/Summary/Keyword: 층간전단시편

Search Result 13, Processing Time 0.021 seconds

Beam-Type Bend Specimen for Interlaminar Fracture Toughness of Laminated Composite under Mixed-Mode Defmrmations (보 형태의 굽힘시편을 이용한 적층복합재료의 혼합모우드 층간파괴인성 평가)

  • 윤성호;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.911-920
    • /
    • 1989
  • It this study, beam-type bend specimen is used to evaluate the interlaminar fracture toughness of laminated composite under mixed-mode deformations. The specimen is loaded under three-point bending and hence produced mixed-mode deformations in the vicinity of the crack tip according to the variation of the thickness ratio on delamination plane. Total energy release rate is obtained by elementary beam theory considering the effect of shear deformation. The partitioning of total value into mode-I and mode-II components is also performed. The mixed-mode interlaminar fracture toughness is evaluated by experiments on specimens with several thickness ratios of delamination plane. As the part of delamination plane is thicker, the effect of shear deformation on total energy release rate is increased. Beam-type bend specimen men may be applied to obtain informations on the mixed-mode interlaminar fracture behavior of laminated composites.

Prediction of Long-Term Interlaminar Shear Strength of Carbon Fiber/Epoxy Composites Exposed to Environmental Factors (환경인자에 노출된 탄소섬유/에폭시 복합재의 장기 층간전단강도 예측)

  • Yoon, Sung Ho;Shi, Ya Long
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.71-76
    • /
    • 2017
  • The purpose of this study was to predict the long-term performance using the interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors. Interlaminar shear specimens, manufactured by the filament winding method, were exposed to the conditions of drying at $50^{\circ}C$, $70^{\circ}C$, and $100^{\circ}C$ and of immersion at $25^{\circ}C$, $50^{\circ}C$, and $70^{\circ}C$ for up to 3000 hours, respectively. According to the results, the interlaminar shear strength did not vary significantly with the exposure time for the drying at $50^{\circ}C$ and $70^{\circ}C$, but it increased somewhat for the drying at $100^{\circ}C$ due to the post curing as the exposure time increased. The interlaminar shear strength of the specimens exposed to the immersion at $25^{\circ}C$ did not change significantly at the beginning of exposure, but it decreased with the exposure time and the degree of decrease increased as the environmental temperature increased. The linear regression equations for the environmental temperatures were obtained from the interlaminar shear strength of the specimens exposed to the immersion for up to 3000 hours. Using these linear regression equations, the interlaminar shear strength was estimated to be within 5.5% of the measured value at $25^{\circ}C$ and $50^{\circ}C$, and 2.3% of the measured value at $70^{\circ}C$. Therefore, the proposed performance prediction procedures can predict well the long-term interlaminar shear strength of carbon fiber/epoxy composites exposed to environmental factors.

A study on the variation of in-plane and out-of-plane properties of T800 carbon/epoxy composites according to the forming pressure (성형 압력에 따른 T800 탄소섬유/에폭시 복합재료의 평면 내.외 물성 변화에 대한 연구)

  • Park, Myong-Gil;Cho, Sung-Kyum;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.61-66
    • /
    • 2010
  • In this paper, the variation of mechanical properties of T800 carbon/epoxy composites according to the forming pressure, which was referred to previous studies on a filament winding process, were investigated. The specimens of all the tests were fabricated by an autoclave de-gassing molding process controlling forming pressure (absolute pressures of 0.1MPa, 0.3MPa, 0.7MPa including vacuum) and water jet cutting after fabricating composite laminates. Various tensile tests were performed for in-plane properties and interlaminar properties were also measured by using Iosipescu test jig. Fiber volume fraction was measured to correlate the property variation and the forming pressure. This properties are expected to be utilized in the design of Type III pressure vessel for hydrogen vehicles which uses the same carbon fiber (T800 carbon fiber) for the filament winding process.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.

Effects of Increase in Ratio of Phenolic Hydroxyl Function on Carbon Fiber Surfaces by Anodic Oxidation on Mechanical Interfacial Bonding of Carbon Fibers-reinforced Epoxy Matrix Composites (양극산화 처리에 따른 탄소섬유 표면의 페놀릭 하이드록실 관능기 비율의 증가가 에폭시기지 복합재료의 기계적 계면결합 특성에 미치는 영향)

  • Kim, Dong-Kyu;Kim, Kwan-Woo;Han, Woong;Song, Bhumkeun;Oh, Sang-Yub;Bang, Yun Hyuk;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.472-477
    • /
    • 2016
  • We studied the effects of anodic oxidation treatments of carbon fibers on interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites with various current densities. The surface of treated carbon fibers was characterized by atomic force microscope (AFM), field emission-scanning electron microscope (FE-SEM), Fourier transform infrared spectroscopy (FT-IR), and X-ray photoelectron spectroscopy (XPS). The interlaminar shear strength (ILSS) of the composites was determined by a short beam shear test. This result showed that both the roughness and oxygen group of the carbon fibers surface increased in proportion to the current density. After anodic-oxidation-treated, the ILSS also increased as a function of the current density. In addition, the proportional relationship between ILSS and phenolic hydroxyl group was confirmed. The ILSS of the CF-2.0 sample increased by 4% compared to that of the CF-AS sample, because the anodic oxidation treatment increased the oxygen group and roughness on the carbon fibers surface, which leading to the improvement of the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites. Among these, the phenolic hydroxyl group which has the proportional relationship with ILSS is found to be the most important factor for improving the interfacial adhesion of the carbon fibers-reinforced epoxy matrix composites.

Evaluation of Physical and Mechanical Properties based on Liquid Composite Molding (액상성형공정별 물리적/기계적 특성 비교 평가)

  • Park, Dong-Cheol;Kim, Tai-Gon;Kim, Seung-Hyeok;Shin, Do-Hoon;Kim, Hyeon-Woo;Han, Joong-won
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.304-310
    • /
    • 2018
  • Autoclave process has been remaining as one of the most robust and stable process in fabricating structural composite part of aerospace industry. It has lots of advantages, however exhibits some disadvantages or limitations in capital investment and operation. Recently, there have been various Out-of-Autoclave process being researched and developed to overcome those limitations. In this study, laminate specimens were fabricated using LCM (Liquid Composite Molding) process, regarded as one of potential OoA process. DB (Double bagging), CAPRI (Controlled Atmospheric Pressure Resin Infusion), VAP (Vacuum Assisted Process) and Autoclave process were used for laminate specimens. Void content, Thickness, Tg (Glass Transition Temperature), ILSS (Interlaminar Shear Strength) and Flexural strength properties were evaluated for comparison. It is verified that Autoclave based specimen has uniform thickness distribution, the lowest void content and outstanding mechanical properties. And, CAPRI based specimen exhibits relatively good physical and mechanical properties over DB and VAP based specimen and comparable mechanical properties with autoclave based specimen.

The Mechanical Properties of CFRC under High Temperature (CFRC 복합재료의 기계적 고온특성)

  • Song, Gwan-Hyeong
    • Korean Journal of Materials Research
    • /
    • v.11 no.4
    • /
    • pp.258-265
    • /
    • 2001
  • Compression and bending test have been conducted to evaluate the mechanical performance of CFRC at several different temperature up to $2000^{\circ}C$ . Tools and several grips for the test at high temperature were designed to obtain mechanical properties of CFRP. A major cause of increasing strength according to increasing the density and the temperature were analyzed. SEM method was utilized to find out the damage and the fracture mechanism. The new simple equation for the L(span length)/h(beam height) of specimens and for the failure criterion on the 4 point bending were proposed.

  • PDF

Fabrication of nano/micro hybrid compositesusing a discharge flocking device (방전식모 장치를 이용한 나노/마이크로 하이브리드 복합재 제조)

  • Lee, Byung-Kon;Lee, Hak-Gu;Lee, Sang-Bok;Lee, Won-Oh;Yi, Jin-Woo;Um, Moon-Kwang;Kim, Byung-Sun;Byun, Joon-Hyung
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.13-18
    • /
    • 2010
  • One of the biggest challenges in the nano-field is how to effectively disperse nano-scale particles, especially CNTs, which are strongly agglomerated by intermolecular van der Waals forces. This study suggests a new method, discharge flocking, in order to disperse nano-scale particles effectively, which combines corona discharge phenomenon and a traditional electrostatic flocking process. In order to evaluate the discharge flocking process, composite specimens were fabricated by the process and RFI(resin film infusion) process, and then the mechanical and electrical properties of the specimens were measured and compared. Moreover, the evaluation of gas discharge effect on the CNTs and epoxy was performed to compare the mechanical and electrical properties of the composite specimens including the plasma treated CNTs. The experimental results showed that the electrical and mechanical properties of the specimens fabricated by the discharge flocking process were similar to those of the RFI process. In addition, plasma treated CNTs were not affected by gas discharge during the discharge flocking process.

Measurement and Prediction of 3-Dimensional Thermo-Mechanical Propertoes of Carbon-phenolic 8-harness Satin Weave Composites (탄소/페놀 8-매 주자직 복합재료의 3차원 열기계적 등가물성치에 관한 연구)

  • U,Gyeong-Sik;Kim,Pil-Jong;Yun,Gwang-Jun;Gu,Nam-Seo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.41-52
    • /
    • 2003
  • In this paper, three-dimensional thermo-mechanical properties of carbon-phenolic 8-hamess satin weave composites were predicted considering geometric parameters of microstructures. The effective properties were calculated by a series of numerical experiments based on unit cell analysis. The microstructural details were modeled through macro-elements, and the periodic boundary conditions were derived for corresponding un it cell types. The Monte Carlo method was employed to consider the random phase shift between the layers, and the results were investigated on the effect of the geometric parameters of shift, number of layers and waviness ratios. Experimental tests were also performed and the results were compared.

The Effect of the Core-shell Structured Meta-aramid/Epoxy Nanofiber Mats on Interfacial Bonding Strength with an Epoxy Adhesive in Cryogenic Environments (극저온 환경에서 에폭시 접착제의 물성 향상을 위한 나노 보강재의 표면 개질에 관한 연구)

  • Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.2
    • /
    • pp.129-134
    • /
    • 2013
  • The strength of adhesive joints employed in composite structures under cryogenic environments, such as LNG tanks, is affected by thermal residual stress generated from the large temperature difference between the bonding process and the operating temperature. Aramid fibers are noted for their low coefficient of thermal expansion (CTE) and have been used to control the CTE of thermosetting resins. However, aramid composites exhibit poor adhesion between the fibers and the resin because the aramid fibers are chemically inert and contain insufficient functional groups. In this work, electrospun meta-aramid nanofiber-reinforced epoxy adhesive was fabricated to improve the interfacial bonding between the adhesive and the fibers under cryogenic temperatures. The CTE of the nanofiber-reinforced adhesives were measured, and the effect on the adhesion strength was investigated at single-lap joints under cryogenic temperatures. The fracture toughness of the adhesive joints was measured using a Double Cantilever Beam (DCB) test.