• Title/Summary/Keyword: 측 방향 거동

Search Result 41, Processing Time 0.02 seconds

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

Varied Flow Analysis for Linear Drainage Channels (선형 배수로에 대한 부등류 해석)

  • Ku, Hye-Jin;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.8
    • /
    • pp.773-784
    • /
    • 2008
  • The present study was carried out to examine flow properties in linear drainage channels such as road surface drainage facilities. The finite difference formulation for the varied flow analysis was solved for flow profiles in the channels. Starting the first step at the control section, the Newton-Raphson method was applied for producing numerical solutions of the equation. We considered two types of linear drainage channels, a channel with one outlet at downstream end and a channel with two outlets at both ends. Moreover, the flow analysis for various channel slopes was performed. However, we considered channels with the two outlets of slopes satisfying the condition that the both ends are the control section. The maximum of those slopes was decided from the relation between the channel slope and the location of control section. The flow of a channel with one outlet was calculated upward and downward from the control section existing in channel or upward from the control section at downstream end. The flow of a channel with two outlets at both ends were calculated for upstream and downstream channel segments divided by the water dividend, respectively and the flow analysis was completed when the water depth at the water dividend calculated from upstream end was equal to that calculated from downstream end. If the slope was larger than the critical slope, the channel with two outlets was likely to behave like the channel with one outlet. The maximum water depth was investigated and compared with that calculated additionally from the uniform flow analysis. The uniform flow analysis was likely to lead a excessive design of a drainage channel with mild slope.

Analysis on the Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 이석원;박시현;최순욱;배규진
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells measured the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measurements, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process. Considerations on the validity of the field measurements were paid.

Flow and Mixing Behavior at the Tidal Reach of Han River (한강 감조구간에서의 흐름 및 혼합거동)

  • Seo, Il Won;Song, Chang Geun;Lee, Myung Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.731-741
    • /
    • 2008
  • Previous studies on the numerical simulation at the tidal reach of Han River tend to restrict downstream boundary as Jeon-ryu station due to difficulties in gaining cross section data and tidal elevation values at Yu-do. But, in this study, geometries beyond the confluence of Gok-reung stream and Im-jin River are constructed based on the numerical sea map; tidal elevation at the downstream boundary, Yu-do is estimated by harmonic analysis of In-cheon tide gage station so that hydrodynamic and diffusion behavior have been analyzed. The domain ranging from Shin-gok submerged weir to Yu-do is selected (which is 36.8 km in length). RMA-2 and RAM4 developed by Il Won Seo (2008) are applied to simulate flow and diffusion behavior, respectively. Numerical results of flow characteristic are compared with the measured data at Jeon-ryu station. Simulation is carried out from June 23 to 25 in 2006 on the ground that hydrologic data is satisfactory and tidal difference is huge during that period. The result shows that reverse flow occurs 5 times according to the tidal elevation at Yu-do and the maximum reverse flow is observed up to Jang-hang IC, which is 32.9 km in length. Also analysis is focused on the process of generation and disappearance of reverse flow, the distribution of water surface elevation and velocity along the maximum velocity line, and the transport of nonconservative pollutant. Pollutant injected from Gul-po stream spreads widely across the river; however, the size of BOD cloud entering from Gok-reung stream is relatively small because water depth at the mid and left side becomes deeper and maximum velocity occurs along the right bank so that transverse mixing is completed quickly. Finally, mixing characteristic of horizontal salinity distribution is obtained by estimating the salinity input with analytical solution of 1D advection-dispersion equation.

Analytical Study on the Prying Action Force and Axial Tensile Stiffness of High-Strength Bolts Used in an Unstiffened Extended End-Plate Connection (비보강 확장단부판 접합부에 체결된 고장력볼트의 지레작용력 및 축방향 인장강성에 대한 해석적 연구)

  • Kim, Hee Dong;Yang, Jae Guen;Lee, Hyung Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.251-260
    • /
    • 2015
  • The end plate connection is applied to beam-column moment connections in various forms. Such end plate connection displays changes in the behavioral characteristics, strength and stiffness, and energy dissipation capacity based on the thickness and length of the end plate, the number and diameter of the high strength bolt, the gauge distance of the high strength bolt, prying action force of the high strength bolt, and dimensions and length of the welds. Accordingly, this study has apprehended the axial tensile stiffness and prying action force of the high strength bolt connected on the tensile side based on the difference in thickness of the end plate, and was conducted to propose an analysis model for the prediction of such variables that affect the operating properties of the end plate. To achieve this, this study has conducted a three-dimensional non-linear finite-element analysis of the unstiffened expanding end plate connection by selecting only the thickness of the end plate as the variable.

3-Dimensional Hydrodynamic and Water Quality Modeling of the Namkang lake Using EFDC-WASP (EFDC-WASP을 이용한 남강호의 3차원 수리.수질 모의 연구)

  • Choi, Ik-Sung;Seo, Dong-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.213-213
    • /
    • 2011
  • 남강은 낙동강에 유입되는 지류 중 가장 큰 하천으로서 낙동강 하류의 수질에 매우 큰 영향을 미치고 있다. 남강댐은 저수 용량에 비해 유역면적이 주요 저수지들에 비하여 월등하게 크므로 홍수시 순간적으로 다량의 유량 및 오염물질이 방류되어 낙동강에 유입되는 특성을 가지고 있다. 남강댐은 서북측에서 유입되는 경호강과 남쪽에서 댐축과 가까이 유입되는 덕천강이 공간적으로 멀리 떨어져 있음으로 인해, 주요 유입물질이 유입되는 시기에 횡방향 및 종방향으로 농도차이를 나타내고 있으며, 과거에 설치되었던 댐이 수중에 존재함으로 인해 국지적인 정체현상이 발생하고 있다. 남강은 현재 경남권은 물론, 거제 및 부산권의 용수원을 공급하거나 예정으로 있으므로 수질관리에 가장 큰 우선순위를 두어야 한다. 남강댐의 합리적인 수질관리를 위해서는 호 내의 공간적 시간적 수질변화에 대한 이해와 수질변화 여건에 있으며 이용되는 만큼 호 내의 정밀한 유체거동 해석이 필수적이다. 본 연구에서는 남강댐의 수리-수질 특성을 진단하고 예측하기 위하여 3차원 수리동역학 모델인 EFDC와 수질모델인 WASP을 연계하여 사용하였다. 유량 경계조건은 한국수자원공사 및 국가수자원관리 종합 정보시스템(WAMIS)의 남강댐 운영 자료를 바탕으로 남강댐의 유입량과 유출량 자료를 작성하였다. 남강으로 유입되는 지천 및 호 내의 수온, SS 및 수질농도 등은 환경부의 물환경정보시스템의 월 측정자료를 사용하였으며, 기상조건은 진주 기상대의 자료를 사용하였다. 본 연구에서 가용한 입력자료를 이용하여 남강댐의 수리 및 수질 및 부유물질 특성을 모의하였으며 EFDC-WASP 모델을 이용하여 성공적인 보정이 가능한 것을 확인하였다. 그러나 자세한 분석과 대책을 수립하기 위해서는 남강댐의 유입 수질 및 유량 자료에 대한 실질적인 모니터링이 수행되는 것이 필요하다고 판단된다.

  • PDF

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

A Case Study on Deformation Behaviors of CFRD with Water Level Change (수위변화에 따른 CFRD의 변형거동 사례분석)

  • Yun, Jung-Mann;Yea, Geu-Guwen;Kim, Hong-Yeon;Lee, Jae-Yeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.21-31
    • /
    • 2018
  • This paper analyzes the displacements of CFRD which was completed by field measurement. It is to understand the deformation behavior of the dam body according to the water level change from the impounding time. And it was compared with numerical analysis results. As a result of measuring the behavior of the dam crest and downstream slope according to impounding, horizontal displacements in axis direction of the dam, upstream and downstream displacements and settlements occurred mostly when the water level reaches about half of the dam height. The displacements continued until the water level reached its maximum. After that, it showed a constant convergence regardless of the water level. Horizontal displacements of the face slab which is the most important in CFRD were similar at all locations. The Horizontal displacements of the face slab showed the trends of increasing in winter and decreasing in summer due to the effect of the outside temperature before impounding. Also, the displacements increased until the water level reached about half of the dam height. After that, they decreased with rising in water level. As a result, the face slab behaviors according to seasonal change after impounding as well as water level condition. It is judged because of the material characteristics of the concrete slab. Numerical analysis showed slightly different maximum settlement and depth of occurrence from the measuring data after construction of the dam. It is considered that this is due to various design and construction differences such as the estimation of input parameters in analysis, construction period, and the layer thickness of construction. For the overall period of the dam, the settlements were mostly completed during the construction period and some settlements occurred in the early days of impounding and then converged.

Experiment and Strength Analysis of High-Strength RC Columns (고강도 철근 콘크리트 기둥의 실험 및 강도해석)

  • Son, Hyeok-Soo;Kim, Jun-Beom;Lee, Jae-Hoon
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.149-160
    • /
    • 1999
  • This paper is a part of a research aimed at the verification of basic design rules of high-strength concrete columns. A total of 32 column specimens were tested to investigate structural behavior and strength of eccentrically loaded reinforced concrete tied columns. Main variables included in this test program were concrete compressive strength. steel amount, eccentricity, and slenderness ratio. The concrete compressive strength varied from 356 kg/$cm^2$ to 951 kg/$cm^2$ and the longitudinal steel ratios were between 1.13 % and 5.51 %. Test results of column sectional strength are compared with the results of analyses by ACI rectangular stress block, trapezoidal stress block, and modified rectangular stress block. Axial force-moment-curvature analysis is also performed for predicting axial load-moment strength and compared with the test results. The ACI rectangular stress block provides over-estimated column strengths for the lightly reinforced high strength column specimens. The calculated strengths by moment-curvature analyses are highly affected by $k_3$ values of the concrete stress-strain curve. Observed failure mode. concrete ultimate strain, and stress block parameters are discussed.

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sup;Park, Tae-Soon;Lee, Jong-Sun;Lee, Jun-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.