• Title/Summary/Keyword: 측정 시편

Search Result 1,987, Processing Time 0.028 seconds

AN EVALUATION OF WEAR CHARACTERISTICS OF LIGHT-CURED RESTORATIVE COMPOSITES ON ENAMEL SURFACE (광중합형 복합레진과 법랑질간의 마모특성 평가)

  • Baik, Byeong-Ju;Lee, Seung-Young;Lee, Doo-Cheol;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.261-270
    • /
    • 2001
  • This study was performed to evaluate wear characteristics of light-cured composites when opposed by human enamel. Seven light-cured restorative composites were selected and enamel cusps sectioned from premolars. All samples were stored in distilled water at $37^{\circ}C$ for 10 days. 68.6 N of weight was loaded during the test. The measurements of vertical loss of enamel cusps, weight loss and volume loss of composites, and SEM observations of the polished and abraded surfaces were made after 30,000 cycles. The results obtained were summarized as follows; 1. The highest hardness value of 70.4 was observed in the Spectrum group and the lowest value of 19.8 was observed in the Heliomolar group. Results of Tukey test showed that an overall significant difference was indicated except the Spectrum, Z100 and Clearfil AP-X groups(p<0.05). 2. Enamel showed the good abrasion resistance against the Heliomolar group of microfilled composite and the Palpique Toughwell group containing the submicron hybrid type spherical fillers. 3. The abrasive wear resistance of hybrid composites was improved with the decrease of mean particle size and hybrid of submicron particle fillers. 4. SEM observation of worn surfaces revealed the protrusion, attrition and missing of fillers, cracks developing and delamination in the matrix.

  • PDF

Comparison of flexural strength and modulus of elasticity in several resinous teeth splinting materials (여러 레진계 치아고정 재료의 굴곡강도 및 탄성계수 비교)

  • Yoo, Je-In;Kim, Soo-Yeon;Batbayar, Bayarchimeg;Kim, Jin-Woo;Park, Se-Hee;Cho, Kyung-Mo
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.169-175
    • /
    • 2016
  • Purpose: Direct splinting material should have high flexural strength to withstand force during mastication and low modulus of elasticity to provide some movement while force applied for relief of stress. The purpose of this study was to compare flexural strength and modulus of elasticity of several resinous splinting materials. Materials and Methods: Four materials; Super-Bond C&B, G-FIX, G-aenial Universal Flo, FiltekTM Z350 XT; were used in this study. Fifteen rectangular bar specimens of each material were prepared. Three-point bending test were performed to determine physical properties. Maximum load at fracture was recorded and flexural strength and modulus of elasticity were calculated. One-way analysis of variance (ANOVA) and Scheffe's tests at a 0.05 level of significance were conducted on all test results. Results: Statistical analysis reveals that Super-Bond C&B had significant low mean value for flexible strength and the other three materials showed no significant difference. For modulus of elasticity, Super-Bond C&B exhibited statistically lower modulus of elasticity. G-FIX presented intermediate result, showing statistically higher modulus of elasticity than Super-Bond C&B but lower than G-aenial Universal Flo and FiltekTM Z350 XT. There was no significant difference on modulus of elasticity between G-aenial Universal Flo and FiltekTM Z350 XT. Conclusion: Using a G-FIX, the newly commercially available splinting material, which shows higher fracture resistance properties comparable to flowable and restorative composite resin and a relatively flexible nature might be a beneficial for stabilizing teeth mobility.

INHIBITORY EFFECT OF CRUDE IgY ON ACID PRODUCTION AND ENAMEL DEMINERALIZATION BY STREPTOCOCCUS MUTANS (Streptococcus mutans의 산 생성과 법랑질 탈회에 대한 조난황항체(IgY)의 억제 효과)

  • Oh, Se-Yeong;Lee, Kwang-Hee;Kim, Dae-Eup
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.76-83
    • /
    • 2002
  • The purpose of study was to determine the effectiveness of crude IgY to S. mutans in preventing the acid production and the demineralization of primary tooth enamel in vitro. The acid production by S. mutans in Todd Hewitt broth with and without 5% sucrose was inhibited by 2.5% crude IgY, and as the concentration of crude IgY increased from 2.5% to 17.5%, the pH drop of the media after incubation continued to decrease. There were high positive correlations between the concentration of crude IgY and the pH of media in the late incubation period. The inhibition rate of demineralization of primary tooth enamel by S. mutans was determined by measuring the surface microhardness after incubation in 5% sucrose Todd Hewitt broth for 12 hours. The inhibition rate was 32.28% in 2.5% IgY, 42.28% in 7.5% IgY, 64.06% in 12.5% IgY, and 92.79% in 17.5% IgY. There was high positive correlation between the concentration of crude IgY and the surface microhardness of enamel after demineralization These results suggest that it would be possible to prevent dental caries through passive immunization using crude IgY.

  • PDF

SHEAR BOND STRENGTH OF SELF-ETCHING PRIMER SYSTEMS TO CONTAMINATED DENTIN IN PRIMARY TEETH (오염된 유치 상아질에 대한 자가 부식 프라이머의 결합강도에 관한 연구)

  • Seo, Ju-Hee;Lee, Kwang-Hee;Kim, Dae-Eup
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.29 no.1
    • /
    • pp.107-114
    • /
    • 2002
  • The purpose of this study was to determine and compare the shear bond strength of two self-etching primer systems to primary teeth contaminated with saliva and blood. Clearfil SE Bond and AQ Bond were evaluated. One hundred specimens were made by seventy-five deciduous teeth(fifty anterior and twenty-five posterior teeth) and divided randomly into ten groups. Small flat dentinal surfaces were prepared by grinding the buccal, lingual and labial areas. Specific surface treatments were applied to each group: (1) a self-etching primer application(control group), (2) saliva contamination followed by primer(Group I), (3) primer curing followed by saliva contamination (Group II), (4) blood contamination followed by primer(Group III), (5) primer curing followed by blood contamination(Group IV). After bonding of composite resin(Z100, 3M, USA) to contaminated sample surfaces and thermocycling(1,000 cycles), shear bond strengths were measured using Universal Testing Machine(Zwick Z020, Zwick Co., Germany). The results were as follows; 1. Group I showed lower shear bond strength than control group but no statistically significant difference was found(P>0.05). 2. Group II and blood contamination group(Group III & IV) showed significantly lower shear bond strength than control group(P<0.01). 3. The shear bond strength of Clearfil SE Bond was significantly higher than that of AQ Bond(P<0.05).

  • PDF

Magnetic properties and the shapes of magnetic domain for $CoCr_{16.2}Pt_{10.8}Ta_4$ alloy films with the prior deposition of Ti layer ($CoCr_{16.2}Pt_{10.8}Ta_4$ 합금박막의 Ti 우선증착에 따른 자기적 특성과 자구형상변화)

  • 이인선;김동원
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2000
  • A quaternary alloy film of $CoCr_{16.2}Pt_{10.8}Ta_4$was investigated for its magnetic properties and c-axis orientation with and without Ti underlayer. Additional elements such as Ta, Pt have been frequently introduced in CoCr alloy film for perpendicular recording as a means of improving magnetic performance. It has been reported that the addition of Pt and Ta in CoCr increase the coercivity and the magnetic isolation of columnar grains, respectively. However, CoCrPtTa perpendicular magnetic layer should be more increased its perpendicular magnetic anisotropy than at present for the application of ultrahigh recording density. The improvement of underlayers and substrate materials is one of the promised schemes to intensify the perpendicular magnetic anisotropy. In this study, the insertion of Ti underlayer shows the remarkable improvement of c-axis orientation compare with the direct deposition on the bare glass. The mechanism about this effect of Ti underlayer on CoCrPtTa is not to be clarified yet. Meanwhile, it is found that the magnetic domain of CoCrPtTa on 20 nm Ti underlayer has the continuous stripe pattern but the one of CoCrPtTa on 90 nm Ti underlayer shows the discrete mass type from the results of MFM investigation. This phenomenon is to be a distinct evidence that the improvement of perpendicular anisotropy by the adoption of Ti underlayer is originated from the reinforcement of the grain boundary segregation in CoCrPtTa alloy. Moreover, the transition of the M-H hysteresis pattern with the thickness of Ti underlayer indicates that the major contribution of Ti underlayer is not the magnetocrystalline anisotropy but the shape anisotropy due to the formation of uniform columnar grains by the nonmagnetic alloy segregation.

  • PDF

Study of NO Storage and Reduction on LNT by Micro Bench-Flow Reactor (마이크로 벤치-플로우 리액터를 이용한 LNT 촉매의 NO 흡장과 정화성능에 관한 연구)

  • Yoon, Joo-Wung;Hwang, Seung-Kwon;Hwang, In-Goo;Park, Sim-Soo;Lee, Jin-Ha;Yeo, Gwon-Koo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.8
    • /
    • pp.789-798
    • /
    • 2011
  • We carry out an experimental investigation to analyze the basic performance of NO(nitric oxide) storage in a lean phase and also analyze the NO reduction achieved by the spraying of reducing agents in the rich phase of the exhaust gas in an LNT(Lean NOx Trap). This is an after-treatment system used to reduce the NOx emissions from a diesel engine. If the stored NO is reduced, we measure the outlet concentration downstream of the LNT. The test LNT material used in the experiments is commercial LNT. After being canned into stainless-steel(SUS304), it was built in a micro bench-flow reactor. Compositions of feed gases, three heated and three no heated gases were sprayed upstream of the LNT to analyze the characteristics. We use various temperatures and space velocities as response variables.

Experimental Research on the Surface Changes and the Abrasion Resistance of Pit and Fissure Sealant by Fluoride (불소도포제에 의한 치면열구전색제의 마모저항성과 표면 변화에 관한 실험연구)

  • Hwang, Su-Hyun;Yu, Ji-Su
    • Journal of dental hygiene science
    • /
    • v.10 no.5
    • /
    • pp.373-378
    • /
    • 2010
  • To test the effects of representative fluoride vanishes-1.23% APF gel and 5% NaF Fluoride Varnish-on the surface structure of pit and fissure sealant, this study classified samples of pit and fissure sealant into five groups: Group I deposited in distilled water for ten minutes, Group II treated with APF gel for one minute, Group III treated with APF gel for four minutes, Group IV treated with Fluoride Varnish for one minute, and Group V treated with Fluoride Varnish for four minutes. An abrasion test was carried out to measure changes in weight, along with observation of the surface structure by using an optical microscope, consequently drawing the following conclusions. 1. The results of the abrasion test using pit and fissure sealant, Concise, showed that Group III had the reduction in weight more increased than Group I and that Group V had less reduction in weight (p<0.05); the results of the abrasion test using Eco-S showed Group III had the reduction in weight more increased than Group I and that Group V had less reduction in weight (p<0.05). 2. The results of observation using an optical microscope showed that application of APF gel made the filler remarkable due to loss of substrate and that Group III treated with APF gel for four minutes had the toughest surface, followed by Group II treated with APF gel for one minute, Group I deposited in distilled water for ten minutes, Group IV treated with Fluoride Varnish for one minute, and Group V treated with Fluoride Varnish for four minutes.

Effect of Sn Decorated MWCNT Particle on Microstructures and Bonding Strengths of the OSP Surface Finished FR-4 Components Assembled with Sn58%Bi Composite Solder Joints (OSP 표면처리된 FR-4 PCB기판과 Sn58%Bi 복합솔더 접합부의 미세조직 및 접합강도에 미치는 Sn-MWCNT의 영향)

  • Park, Hyun-Joon;Lee, Choong-Jae;Min, Kyung Deuk;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.163-169
    • /
    • 2019
  • Sn-Pb solder alloys in electronics rapidly has been replaced to Pb free solder alloys because of various environmental regulations such as restriction of hazardous substances directive (RoHS), European Union waste electrical, waste electrical and electronic equipment (WEEE), registration evaluation authorization and of chemicals (REACH) etc. Because Sn58%Bi (in wt.%) solder alloy has low melting point and higher mechanical properties than that of Sn-Pb solder, it has been studied to manufacture electronic components. However, the reliability of Sn58%Bi solder could be lowered because of the brittleness of Bi element included in the solder alloy. Therefore, we observed the microstructures of Sn58%Bi composite solders with various contents of Sn-decorated multiwalled carbon nanotube (Sn-MWCNT) particles and evaluated bonding strength of the FR-4 components assembled with Sn58%Bi composite solder. Also, microstructures and bonding strengths of the Sn58%Bi composite solder joints were evaluated with the number of reflows from 1 to 7 times, respectively. Bonding strengths and fracture energies of the Sn58%Bi composite solder joints were measured by die shear test. Microstructures and fracture modes were observed with scanning electron microscope (SEM). Microstructures in the Sn58%Bi composite solder joints were finer than that of only Sn58%Bi solder joint. Bonding strength and fracture energy of Sn58%Bi composite solder including 0.1 wt.% of Sn-decorated MWCNT particles increased up to 20.4% and 15.4% at 5 times in reflow, respectively.

ANALYSIS OF ER:YAG LASER IRRADIATION ON CUTTING EFFICACY OF ENAMEL AND DENTIN (Er:YAG 레이저의 법랑질 및 상아질의 삭제효과 비교)

  • Hong, Seong-Su;Lee, Sang-Ho;Lee, Chang-Seop;Kim, Su-Gwan
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.4
    • /
    • pp.728-734
    • /
    • 2001
  • The purpose of this study was to investigate the effects of Er:YAG laser on cutting of efficacy of enamel and dentin in primary and permanent teeth. We used the enamel and dentin specimens of human teeth which contain the physiologic saline and maintain the pulpal pressure in dentinal tubules. Each specimen was exposed to Er:YAG laser with non-contact mode under different treatment condition of irradiation energy, pulse repetition rate. We investigated the cutting efficacy of Er:YAG laser by Scanning Intensity Microscopy, and obtained following results. 1. Cutting volume of enamel and dentin in primary and permanent teeth were increased by increasing the irradiation energy, pulse repetition rate. 2. Cutting volume of primary teeth was larger than that of permanent teeth. 3. Cutting volume of dentin was larger than that of enamel in primary and permanent teeth. From these results, Er:YAG laser would be more effective in cutting dentin than enamel, and in cutting primary teeth than permanent teeth for clinical application.

  • PDF

Durability of Carbon/Epoxy Composites for Train Carbody under Salt Water Environment (염수환경에 노출된 철도차량용 탄소섬유/에폭시 복합재의 내구성 평가)

  • Yoon, Sung-Ho;Hwang, Young-Eun;Kim, Jung-Seok;Yoon, Hyuk-Jin;Kessler, Michael R.
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.357-363
    • /
    • 2008
  • This study investigates the durability of carbon/epoxy composites for use on train car bodies under a salt water spray environment. Salt water solution with 5% NaCl, similar to natural salt water, was used for the salt water environmental tests. The specimens were obtained from a composite panel consisting of an epoxy matrix reinforced with T700 carbon fabric. The specimens were exposed to the salt water environment for up to 12 months. Mechanical tests were performed to obtain tensile properties, flexural properties, and shear properties. Dynamic mechanical analysis was used to measure such thermal properties as storage modulus, loss modulus, and tan $\delta$. Also FT/IR tests were conducted to investigate changes in chemical structure with exposure. The results revealed that fiber-dominated mechanical properties were not affected much by exposure time, but matrix-dominated mechanical properties decreased with increasing exposure time. Storage modulus was not very sensitive to exposure time, but glass transition temperature was affected, slightly decreasing with increasing exposure time. Although the peak intensity of FT/IR curves was affected slightly by exposure time, the peak shape and peak location of FT/IR curves were not noticeably changed. Carbon/epoxy composites used for this study were relatively stable to the salt water environment.