• Title/Summary/Keyword: 측정 불확도

Search Result 459, Processing Time 0.023 seconds

Determination and Validation of Synthetic Antioxidants in Processed Foods Distributed in Korea

  • Park, Hyeon-Ju;Seo, Eunbin;Park, Jin-Wook;Yun, Choong-In;Kim, Young-Jun
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.5
    • /
    • pp.297-305
    • /
    • 2022
  • Antioxidants are food additives that extend the shelf life of food products by preventing lipid rancidity caused by active oxygen. They can either be naturally-derived or manufactured synthetically via chemical synthesis. In this study, method validation of five synthetic antioxidants, namely butylated hydroxyanisole, butylated hydroxytoluene, tertiary butylhydroquinone, propyl gallate, and disodium ethylenediaminetetraacetic acid, was performed using a high performance liquid chromatography-ultraviolet visible detector, and the method applicability was evaluated by analyzing foods containing antioxidants. The coefficient of determination (R2) average was 0.9997, while the limit of detection and limit of quantification were 0.02-0.53 and 0.07-1.61 mg/kg, respectively. The intra and inter-day accuracies and precisions were 83.2±0.7%-98.7±2.1% and 0.1%-5.7% RSD, respectively. Inter-laboratory validation for accuracy and precision was conducted using the Food Analysis Performance Assessment Scheme quality control material. The results satisfied the guidelines presented by the AOAC International. In addition, the expanded uncertainty was less than 16%, as recommended by CODEX. Consequently, to enhance public health safety, the results of this study can be used as basis data for evaluating the intake of synthetic antioxidants and assessing their risks in Korea.

Evaluation of Characteristics in the Reference Gamma Radiation Fields for testing of Personnel Dosimetry Performance (개인선량 평가의 성능검증을 위한 기준급 감마선장의 특성 평가)

  • Oh, Jang-Jin;Cho, Dae-Hyung;Han, Seung-Jae;Na, Seong-Ho;Lee, Dew-Hey;Lee, Byung-Soo;Jun, Jae-Shik;Chai, Ha-Seok;Yi, Chul-Young
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.4
    • /
    • pp.229-236
    • /
    • 1998
  • In order to establish a testing system for personnel dosimetry performance, the radiation fields from photons, beta particles and neutrons are required, in recent, Korea Institute of Nuclear Safety(KINS) established the reference radation fields except neutrons and tested a variety of their properties. As a result of the test, the reference beams were shown to meet satisfactorily not only the standards of the International Organization for Standardization(ISO), but also the standard levels of the developed countries which are intercomparable with the international traceability. This paper describes the reference beam of gamma radiation. The self-designed and established reference radiation fields were investigated and analyzed by ISO and other international standards. The secondary photon contribution and the beam uniformity of the gamma radiation field were measured and evaluated to fulfill those requirements suggested by the ISO-4037. The measured air kerma rate for the $^{137}$Cs and $^{60}$Co gamma fields was 0.1891 $\sim$ 23.4967 $\mu$Gy/s sand 0.5844 $\sim$ 15.9954 $\mu$Gy/s respectively. The uncertainty with 95 % confidence level of the measured air kerma rate was determined to be less than 2.5 % which is comparable to the international reference gamma radiation fields. It was found that the evaluated air kerma calibration factors of Exradin ionization chamber were in good agreement within 0.9 % and 0.03 % with those given by PTB and NIST, respectively. The gamma radiation fields installed at KINS can maintain traceability systems in Korea, Germany and United State.

  • PDF

Development of soil certified reference material for determination of the hazardous elements (유해원소 측정용 토양 인증표준물질 개발)

  • Kim, In-Jung;Min, Hyung-Sik;Suh, Jung-Ki;Han, Myung-Sub;Lim, Myung-Chul;Kim, Young-Hee;Shin, Sun-Kyoung;Cho, Kyung-Haeng
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.485-491
    • /
    • 2010
  • A certified reference material (CRM) of KRISS 109-03-SSD was developed for the analysis of hazardous elements in soil. The target elements were As, Cd, Cr, Cu, Hg, Ni, Pb, Zn being regulated by the Soil Environment Conservation Act. Starting material was collected from tailing dump of an unworked tungsten mine at Sangdong (Gangwon-do, Korea). The starting material under-went through a series of fabricating process steps of screening, drying, grinding, sieving, blending, bottling, sterilization and was certified according to the ISO Guide 35. Isotope dilution-inductively coupled mass spectrometry (ID-ICP/MS) and instrumental neutron activation analysis (INAA) were used for the measurement. Homogeneity was tested according to ISO 13528 annex B. The certified values were determined using the results from two different methods or from two independent measurements using a method. Finally, certified values of seven elements of arsenic, cadmium, chromium, copper, lead, nickel and zinc were determined. Mercury did not satisfied the criteria of homogeneity and the result would be provided for information only, together with iron and tungsten. It was also studied, the extractable fraction of elements by aqua regia according to the ISO 11466 protocol being frequently studied for the purpose of environmental monitoring. It was performed as a inter-laboratory study by 6 laboratories of a public institute and universities. Standard deviation among the laboratories was much bigger than the uncertainty of the certified value. The result of inter-laboratory study on the extractable fraction will be provided for information, only.

A Rapid Analysis of 226Ra in Raw Materials and By-Products Using Gamma-ray Spectrometry (감마분광분석을 이용한 원료물질 및 공정부산물 중 226Ra 신속분석방법)

  • Lim, Chung-Sup;Chung, Kun-Ho;Kim, Chang-Jong;Ji, Young-Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • A gamma-ray peak of $^{226}Ra$ (186.2 keV) overlaps with one of $^{235}U$ (185.7 keV) in a gamma-ray spectrometry system. Though reference peaks of $^{235}U$ can be used to correct the peak interference of $^{235}U$ in the analysis of $^{226}Ra$, this requires a complicated calculation process and a high limit of quantitation. On the other hand, evaluating $^{226}Ra$ using the correction constant in the overlapped peak can make a rapid measurement of $^{226}Ra$ without the complicated calculation process as well as overcome the disadvantage in the indirect measurement of $^{214}Bi$, which means the confinement of $^{222}Rn$ gas in a sample container and a time period to recover the secular equilibrium. About 93 samples with 6 species for raw-materials and by-products were prepared to evaluate the activity of $^{226}Ra$ using the correction constant. The results were compared with the activity of $^{214}Bi$, which means the indirect measurement of $^{226}Ra$, to validate the method of the direct measurement of $^{226}Ra$ using the correction constant. The difference between the direct and indirect measurement of $^{226}Ra$ was generally below about ${\pm}20%$. However, in the case of the phospho gypsum, a large error of about 50% was found in the comparison results, which indicates the disequilibrium between $^{238}U$ and $^{226}Ra$ in the materials. Application results of the contribution ratio of $^{226}Ra$ were below about ${\pm}10%$. The direct measurement of $^{226}Ra$ using the correction constant can be an effective method for its rapid measurement of raw materials and by-products because the activity of $^{226}Ra$ can be produced with a simple calculation without the consideration of the integrity of a sample container and the time period to recover the secular equilibrium.

Error Analysis of Image Velocimetry According to the Variation of the Interrogation Area (상관영역 크기 변화에 따른 영상유속계의 오차 분석)

  • Kim, Seojun;Yu, Kwonkyu;Yoon, Byungman
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.821-831
    • /
    • 2013
  • Recently image velocimetries, including particle image velocimetry (PIV) and surface image velocimetry (SIV), are often used to measure flow velocities in laboratories and rivers. The most difficult point in using image velocimetries may be how to determine the sizes of the interrogation areas and the measurement uncertainties. Especially, it is a little hard for unskilled users to use these instruments, since any standardized measuring techniques or measurement uncertainties are not well evaluated. Sometimes the user's skill and understanding on the instruments may make a wide gap between velocity measurement results. The present study aims to evaluate image velocimetry's uncertainties due to the changes in the sizes of interrogation areas and searching areas with the error analyses. For the purpose, we generated 12 series of artificial images with known velocity fields and various numbers and sizes of particles. The analysis results showed that the accuracy of velocity measurements of the image velocimetry was significantly affected by the change of the size of interrogation area. Generally speaking, the error was reduced as the size of interrogation areas became small. For the same sizes of interrogation areas, the larger particle sizes and the larger number of particles resulted smaller errors. Especially, the errors of the image velocimetries were more affected by the number of particles rather than the sizes of them. As the sizes of interrogation areas were increased, the differences between the maximum and the minimum errors seemed to be reduced. For the size of the interrogation area whose average errors were less than 5%, the differences between the maximum and the minimum errors seemed a little large. For the case, in other words, the uncertainty of the velocity measurements of the image velocimetry was large. In the viewpoint of the particle density, the size of the interrogation area was small for large particle density cases. For the cases of large number of particle and small particle density, however, the minimum size of interrogation area became smaller.

Risk Assessment of Heavy Metals Migrated from Plastic Food Utensils, Containers, and Packaging Distributed in Korea (국내 유통 식품용 플라스틱 기구 및 용기, 포장의 중금속 위해도 평가)

  • Kyung Youn, Lee;Hyung Soo, Kim;Dae Yong, Jang;Ye Ji, Koo;Seung Ha, Lee;Hye Bin, Yeo;Ji Su, Yoon;Kyung-Min, Lim;Jaeyun, Choi
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.175-182
    • /
    • 2022
  • Heavy metals can be intentionally or unintentionally introduced into plastic food utensils, containers, and packaging (PFUCP) as additives or contaminants, which can be ingested with food by humans. Here, seven-heavy metals (lead, cadmium, nickel, chromium, antimony, copper, and manganese) with toxicity concerns were selected, and risk assessment was done by establishing their migration from 137 PFUCP products made of 16 materials distributed in Korea. Migration of heavy metals was examined by applying 4% acetic acid as a food simulant (70℃, 30 minutes) to the PFUCP products. Inductively coupled plasma mass spectrometry (ICP-MS) was employed for the analysis of migrated heavy metals, and the reliability of quantitative results was confirmed by checking linearity, LOD, LOQ, recovery, precision, and expanded uncertainty. As a result of monitoring, heavy metals were detected at a level of non-detection to 8.76 ± 11.87 ㎍/L and most of the heavy metals investigated were only detected at trace amounts of less than 1 ㎍/L on average. However, antimony migrated from PET products was significantly higher than other groups. Risk assessment revealed that all the heavy metals investigated were safe with a margin of exposure above 311. Collectively, we demonstrated that heavy metals migrated from PFUCP products distributed in Korea appear to be within the safe range.

Monitoring of Heavy Metals Migrated from Glassware, Ceramics, Enamelware, and Earthenware (유리제, 도자기제, 법랑 및 옹기류 재질의 식품용 기구 및 용기·포장의 중금속 이행량 모니터링)

  • Cho, Kyung Chul;Jo, Ye-Eun;Park, So-Yeon;Park, Yongchjun;Park, Se-Jong;Lee, Hye Young
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.1
    • /
    • pp.23-30
    • /
    • 2020
  • This study investigated the migration levels of lead (Pb), cadmium (Cd), and arsenic (As) from food contact articles (glassware, ceramics, enamelware, and earthenware) into a food stimulant (4% v/v, acetic acid). Migration tests were performed at 25℃ for 24 h and all analyses were performed using Inductively-Coupled Plasma Mass Spectrometry (ICP-MS). The method was validated by linearity of calibration curves, limit of detection (LOD), limit of quantification (LOQ), recovery, precision, and uncertainty. In glassware, the migration concentrations ranged from not-detected (N.D.) to 752.21 ㎍/L and N.D. to 1.99 ㎍/L for Pb and Cd, respectively. In ceramics, the migration concentrations ranged from N.D. to 1,955.86 ㎍/L, N.D. to 74.06 ㎍/L, and N.D. to 302.40 ㎍/L for Pb, Cd, and As, respectively. In enamelware, the migration concentrations ranged from N.D. to 4.48 ㎍/L, N.D. to 7.00 ㎍/L, and N.D. to 52.00 ㎍/L for Pb, Cd, and Sb, respectively. In earthenware, the migration concentrations ranged from N.D. to 13.68 ㎍/L, N.D. to 0.04 ㎍/L, and N.D. to 6.71 ㎍/L for Pb, Cd, and As, respectively. All results were below the migration limits of Korea standards and specifications for food utensils, containers, and packages.

The Naturally Occurring Levels of Nitrate and Nitrite in Livestock Products (축산물 중 천연유래 질산염 및 아질산염 함유량 조사)

  • Choi, Jae-Chun;Park, So-Ra;Lim, Ho-Soo;Ko, Kyung-Yuk;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.265-271
    • /
    • 2015
  • This study was done in order to investigate the naturally occurring levels of nitrate and nitrite in livestock products. Total samples of 458 consisting of meats (n = 223), processed meat products (n = 51), raw milks (n = 30), processed milk products (n = 142), eggs (n = 5) and processed egg products (n = 7) were analyzed for contents of nitrate and nitrite by ion chromatography (IC). That methods showed good results in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ), recovery, reproducibility and uncertainty. Nitrate and nitrite were detected in 167 and 40 samples, respectively. The nitrate levels (mg/kg) were not detected (ND)~40.23 for modified milks, ND~37.97 for sauce meats, ND~32.40 for process cheeses, ND~31.50 for processed egg products, ND~27.73 for dry milks, ND~24.76 for sausages, ND~22.45 for bacons, ND~21.55 for natural cheeses, ND~20.82 for hams and fermented milks, ND~13.57 for eggs, ND~12.77 for butters, ND~9.31 for milks and ND~3.88 for meats while the nitrite levels (mg/kg) were ND~17.35 for processed egg products and ND~1.92 for meats. In conclusion, the result of this study of nitrate and nitrite in livestock products could be used as one of scientific base datum to determine whether they are naturally occurring or not, including ingredients and their percentage, manufacturing processes, other papers relating to naturally occurring levels of them, and so on.

Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements (드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증)

  • Baek, Seungil;Koh, Sooyoon;Lim, Taehong;Jeon, Gi-Seong;Do, Youngju;Jeong, Yujin;Park, Sohyeon;Lee, Yongtak;Kim, Wonkook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.609-625
    • /
    • 2022
  • Validation of satellite data products is critical for subsequent analysis that is based on the data. Particularly, performance of ocean color products in turbid and shallow near-land ocean areas has been questioned for long time for its difficulty that stems from the complex optical environment with varying distribution of water constituents. Furthermore, validation with ship-based or station-based measurements has also exhibited clear limitation in its spatial scale that is not compatible with that of satellite data. This study firstly performed validation of major GOCI-II products such as remote sensing reflectance, chlorophyll-a concentration, suspended particulate matter, and colored dissolved organic matter, using the in-situ measurements collected from ship-based field campaign. Secondly, this study also presents preliminary analysis on the use of drone images for product validation. Multispectral images were acquired from a MicaSense RedEdge camera onboard a UAV to compensate for the significant scale difference between the ship-based measurements and the satellite data. Variation of water radiance in terms of camera altitude was analyzed for future application of drone images for validation. Validation conducted with a limited number of samples showed that GOCI-II remote sensing reflectance at 555 nm is overestimated more than 30%, and chlorophyll-a and colored dissolved organic matter products exhibited little correlation with in-situ measurements. Suspended particulate matter showed moderate correlation with in-situ measurements (R2~0.6), with approximately 20% uncertainty.