• Title/Summary/Keyword: 측정값

Search Result 14,458, Processing Time 0.043 seconds

Evaluation of Roadmap Image Quality by Parameter Change in Angiography (혈관조영검사에서 매개변수 변화에 따른 Roadmap 영상의 화질평가)

  • Kong, Chang gi;Song, Jong Nam;Han, Jae Bok
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 2020
  • The purpose of this study is to identify factors affecting picture quality in Roadmap images, which were studied by varying the dilution rate, collimation field and flow rate of contrast medium. For a quantitative evaluation of the quality of the picture, a 3mm vessel model Water Phantom was self-produced using acrylic, a roadmap image was acquired with a self-produced vascular model Water Phantom, and the SNR(Signal to Noise Ratio) and CNR (Contrast to Noise Ratio) were analyzed. CM:N/S In the study on the change of dilution rate, CM:N/S dilution rate changed to (100%~10%:100%), and the measurement of the roadmap image taken using the vascular model Water Phantom showed that the measurement value of SNR gradually decreased as the N/S dilution rate was increased, and the measurement of CNR was gradually reduced. It was confirmed that the higher the dilution rate of CM:N/S, the lower the SNR and CNR, and also significant image can be obtained at the dilution rate of CM:N/S (100%~70:30%). The study showed the value of SNR and CNR in Roadmap image was increased as the Collimation Field was narrowed to the center of the vascular phantom; the Collimation Field was narrowed to the center of the vessel model by 2cm intervals to 0cm through 12cm. To verify the relationship with Roadmap image and Flow Rate, volume of the autoinjector was kept constant at 15 and the flow rate was gradually increased 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. The value of SNR and CNR of images taken by using water Phantom gradually decreased as the Flow Rate increased, but at Flow Rate 9 and 10, the SNR and CNR value was increase. It was not possible to confirm the relationship with SNR and CNR by ROI mean value and Background mean value. It is considered that further study is needed to evaluate the correlation about Roadmap image and Flow Rate. In conclusion, as the dilution rate of N/S in contrast medium was increased, the value of SNR and CNR was decreased. The narrower the Collimation Field, the higher image quality by increasing value of SNR and CNR. However, it is not confirmed the relationship Roadmap image and Flow Rate. It is considered that appropriate contrast medium concentration to minimize the effects of kidney and proper Collimation Field to improve contrast of image and reduce exposure X-ray during procedure is needed.

The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams (6MV 광자선에서 측정 조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교)

  • 김회남;박성용;서태석;권수일;윤세철
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.87-102
    • /
    • 1997
  • The absolute absorbed dose can be determined according to the measurement conditions; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of 10cm $\times$ 10cm field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations of phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG21 and IAEA protocol. The differences between two protocols are within 1% while the average value of IAEA protocol was 0.5% smaller than TG21 protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within 1%, but individual discrepancies are in the range of - 2.5% to 1.2% depending upon the choice of measurement combination. The largest discrepancy of - 2.5% was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coeficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, it shows that absorbed dose could be affected by phantom material other than water.

  • PDF

Propagation Model Combination of Building Entry Loss and Clutter Loss in Suburban Environment with Low-Rise High-Density Buildings at 3 and 24 GHz (저층 고밀도 건물 교외 환경에서 3 GHz 및 24GHz의 건물 인입 손실과 클러터 손실의 전파 모델 결합)

  • Kim, Dong-Woo;Oh, Soon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.237-244
    • /
    • 2022
  • We measured the clutter loss (CL) and building entry loss (BEL) of signals in a low-rise high-density suburban environment. Three propagation models for BEL, CL, and a combination of BEL and CL were measured in the selected environment. We then derived the figures when the BEL was combined with the CL. At the two frequencies, the measured value of combination of BEL and CL is 27.55 dB and 26.12dB, respectively, and the differences between the measured value and the sum were -4.19 dB and 5.82 dB. Considering that the measurement was performed inside a building, such a difference seems to be small. Therefore, when BEL and CL were measured separately and summed, and then combined and summed, differences of -4.19 dB and 5.82 dB were apparent. This this result can be referenced when similar case of a propagation model was analyzed.

A Study on the Solutions of Guided Missile Attacks using 3-D RCS Data of Maritime Ship (함정의 3차원 RCS 측정 데이터를 활용한 유도탄 대응 기법 연구)

  • Gwak, Sang-Yell
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.552-557
    • /
    • 2020
  • The Radar Cross Section (RCS) is a virtual region indicating the strength of a wavelength at which a radar signal is reflected and received. As the ship's RCS represents its own stealth performance and survivability, efforts have been made in various areas from design to construction to reduce the RCS. The RCS can be predicted using design drawings and CAD models, but it is necessary to measure the RCS at sea since sea clutter and multipath reflections occur in the sea environment. However, such RCS predictions and measured values provide only a simple relative magnitude to the user, and there has not been much research on this topic. In this paper, a missile countermeasure technique was studied using 3D RCS measurement data in an operating environment. The elevation and azimuth angle of the ship viewed from the missile were estimated using the location information of the missile, and the RCS value was inverted by mapping it to previously measured 3D RCS measurement data. In addition, by using the movement information of the missile, the RCS observed by the missile could be predicted in advance, and this method can be used to propose a response plan based on the maneuvering and chaff system.

Prediction of Physical Properties and Shear Wave Velocity of the Ground Using the Flat TDR System (Flat TDR 시스템을 이용한 지반의 물리적 특성 및 전단파속도 예측)

  • Jeong, Chanwook;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.173-191
    • /
    • 2022
  • In this study, the shear wave velocity of the ground was measured using Flat TDR, and the precision analysis of the measured value and the verification of field applicability were performed. The shear wave velocity measurement value was derived in the field using the piezo-stack combined in the Flat TDR. analyzed. As a result of the experiment, the average value of the change in shear wave speed at the time of grout material injection was 10.15 m/s at the beginning of age, and the average value of the change in shear wave speed after the 7th to 14th days was 65.99 m/s, showing a tendency to increase with age. Also, it was found that dry density and shear wave speed increased as the water content increased on the dry side, and that the dry density and shear wave rate decreased as the water content increased on the wet side as the water content increased. The shear modulus value derived from the field test was confirmed to be a minimum of 17.36 MPa and a maximum of 28.13 MPa, confirming a measurement value similar to the reference value. Through this, it can be seen that the measured value of the shear modulus using Flat TDR is reliable data, and it can be determined that the compaction management of the site can be effectively managed in the future.

Measurement and Analysis of Surface Roughness by a Non-Contact Method for Objective Assessment of Fabric Handle (직물의 객관적 질감평가를 위한 비접촉식 표면 거칠기 측정 및 해석)

  • 박경희;권영하;오경화;김은애
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.357-360
    • /
    • 2002
  • 직물의 질감을 객관화시키는 연구는 고부가가치의 의류제품을 생산하고 판매하는데 매우 중요한 요소이다. 질감은 직물의 역학적 성질과 표면상태에 따라 좌우되며, 이의 측정방법 중에서 KES-F system이 가장 객관화되어 있다. KES-F system을 이용한 표면 거칠기 측정방법은 피아노선을 굴곡 시켜 일정한 힘을 가한 상태에서 직물의 표면을 문질러 측정하므로 직물의 표면을 문질러 측정하므로 직물 표면의 잔털이 눌려진 상태여서 질감해석을 위한 정확한 측정이 어렵다. 따라서 우리는 기하학적인 직물 표면의 거칠기를 표면의 변형없이 측정 가능한 레이저 센서를 사용하였다. 한편 직물의 주로 경사ㆍ위사로 짜여져 있어 이방성 성질을 가지고 있으므로 직물을 3방향으로 측정하여 해석하였다. 측정된 신호는 FET를 이용하여 일정한 주기의 표면형태를 구하고, 표면 높낮이의 평균, 최저값과 최고값을 구하여 표면의 특성을 얻었다. 직물 표면에 존재하는 잔털은 영상처리장치를 이용하여 양을 측정하였으며 표면의 거칠기 측정결과와 비교 분석하여 레이저 센서를 이용한 비접촉식 측정방법의 오차분석 및 표면 특징을 해석하였다.

  • PDF

Luminance Correction Algorithm Based on Measuring Angle for the Portable Luminance Measurement System (휴대용 휘도측정시스템의 측정각도기반 휘도보정알고리즘)

  • Sun, Eun-Hey;Kim, Dongyeon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.4
    • /
    • pp.321-326
    • /
    • 2016
  • In this paper, we propose a luminance correction algorithm based on measuring position for potable luminance measurement system. Measurement position and angle have an affect on the luminance value. We improve the position-based luminance measurement system using luminance correction algorithm based on the measuring angle. We analyze change of luminance value according to the measurement distance and angle from camera and light source. The certified point-luminance meter is used to evaluate a scene luminance measuring method using the image information of camera. Also, we derive an expression equation for evaluating luminance value from determined position. The performances of the proposed system are verified by using comparative experiments with the point-luminance meter using experimental signboard.

임피던스 분석을 통한 유기태양전지의 bending에 따른 성능변화

  • Yu, Se-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.258.1-258.1
    • /
    • 2015
  • ITO가 코팅된 PET 기판 위에 P3HT:PCBM으로 이루어진 bulk heterojunction 유기 태양전지 소자를 만들었다. 이렇게 만들어진 유기 태양전지의 flexibility 특성을 측정하기 위해서, 태양전지 소자를 반지름이 다른 원통에 감아서 휘어지게 한 후 AM 1.5의 조명 하에서 전류-전압 특성을 관측하고 소자의 임피던스 분석도 측정하였다. 이때 flexibility 특성 측정의 일관성을 위하여, 단 하나의 유기 태양전지 소자를 만들고, 이 소자를 반지름이 큰 원통에서 부터 휘게 하고난 후 소자의 특성을 측정하고, 점차 작은 원통으로 바꾸어 가면서 측정을 진행하였다. 임피던스 분석 실험 자료로부터 shifted two semicircles이라는 equivalent circuit model를 분석하고 난 후, 이 회로를 구성하는 구성 성분-R(s), R(low f), R(hi f), C(low f), C(hi f)-값의 변화를 원통의 반지름의 변화에 따라 분석하였다. 반지름이 0.75cm일 때, power conversion efficiency (PCE) 값은 초기값에 비해 약 1/3로 줄었고, 반지름이 0.5cm일 때는 약 10%로 줄어 들었다. 나머지 1~2 cm일 때는 거의 변화가 나타나지 않았다. 휘어짐에 따른 이러한 태양전지의 특성의 변화를 임피던스 분석의 Cole-Cole plot의 저 주파수 영역의 반원의 반지름에 가장 큰 영향을 받음을 확인하였고, 저항과 capacitance 값의 변화에 따른 특성에 대해 이번 발표에서 더 자세히 설명할 예정이다.

  • PDF

A Study on the Partial Path Loss Model By Using the Free Space and Rata Path Loss Model (자유 공간 모델과 하타 모델을 이용한 구간별 경로 손실 모델 설정에 관한 연구)

  • Park, Kyung-Tae;Cho, Hyung-Rae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.3
    • /
    • pp.194-198
    • /
    • 2011
  • In this paper, we obtained the path loss characteristics in the 850 MHz for Russia area by using the free space path loss model and Okumura-Hata path loss model. In order to extract the additional path loss model parameter from the new Russian regional properties, the mean square error technique is used to obtain the correction factor. According to the obtained correction factor, the differences for the free space and Hata path loss model are 17, 6 dB in the 5 ~ 10 Km, 28, 14 dB in the 10 ~ 15 Km, and 35, 18 dB in the 15 ~ 20 Km. By applying the correction factors, the appropriate partial path loss models for the measured Russain area are proposed.

A Power Estimation Model for Arithmetic and Logic Instructions of Embedded Microprocessors (임베디드 마이크로프로세서에서 산술 및 논리 명령어에 대한 전력 예측 모델)

  • Shin Dong-Ha;Kang Kyung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1422-1427
    • /
    • 2006
  • In order to estimate the power consumed by an embedded microprocessor during an execution of software, we measure and utilize the current consumed by the processor during the execution of each instruction. In this paper, we measure and analyse the current consumed by the microprocessor adc16s310 during the execution of arithmetic and logic instructions, and propose a power estimation model which estimates the current for all instruction executions precisely by using a small numbers of current measurements. The proposed model can estimate the current with an average 0.34% error by using only 5.84% of total current measurements for arithmetic and logic instructions of the processor.