• Title/Summary/Keyword: 측정(measurement)

Search Result 20,142, Processing Time 0.043 seconds

Principles and Comparative Studies of Various Power Measurement Methods for Lithium Secondary Batteries (리튬이차전지 출력측정법의 원리 및 측정법간 비교 연구)

  • Lee, Hye-Won;Lee, Yong-Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.15 no.3
    • /
    • pp.115-123
    • /
    • 2012
  • As the market of lithium secondary batteries moves from mobile IT devices to large-format electric vehicles or energy storage systems, the strengthened battery specifications such as long-term reliability longer than 10 years, pack-level safety and tough competitive price have been required. Moreover, even though high power properties should also be achieved for hybrid electric vehicles, it is not easy to measure accurate power values at various conditions. Because it is difficult to choose a proper measurement method and its experimental condition is more complex comparing to capacity measurement. In addition, the power values are very sensitive to power duration time, state-of-charge (SOC) of cells, cut-off voltages, and temperatures, whereas capacity values are not. In this paper, we introduce three kinds of power measurement methods, hybrid pulse power characterization (HPPC) suggested by US FreedomCar, so-called J-pulse by Japan electric vehicle association standards (JEVS) and constant power measurement, respectively. Moreover, with pouch-type unit cells for HEV, experimental power data are discussed in order to compare each power measurement.

Approaches to measurement system analysis in quality management (품질경영에서 측정시스템분석 방안)

  • Baik, Jaiwook
    • Industry Promotion Research
    • /
    • v.6 no.3
    • /
    • pp.19-24
    • /
    • 2021
  • There should be no problem in the measurement system for scientific quality management. In this paper, we want to correctly identify the factors that can affect the measurement results during the measurement process and identify what causes them when the measurement results cause problems in terms of location and variation. Variations in the measurement system are largely described in terms of location and dispersion. Location-related attributes are accuracy, stability, and linearity while dispersion-related attributes are reproducibility and repeatability. Analyzing the factors associated with dispersion is an R&R analysis, in which the size of repeatability and reproducibility is represented by a range of differences between multiple measurements and a range of differences between measurements, and 99% of dispersion is determined. Experimental design can also be used for measurement system analysis. Proper analysis is performed only when the factors causing the fluctuation, the worker and the product, are correctly identified as random or fixed factors.

Development of a Tensile Force Measurement Device of Long Duration (인장력 상시 측정장치 개발에 관한 연구)

  • Shin, Kyung Jae;Hwang, Yun Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.435-445
    • /
    • 2003
  • Tension member is one of the most important elements in tension structure. An economical and reliable measurement method of a member's tensile force has yet to be developed, however. Several conventional measurement methods have some disadvantages when used for long-term, on-site measurement. A new tension-force measurement device was proposed to resolve measuring problems. Its principle was to use the bending part of the device as an elastic spring. The lateral deformation of the bending part due to tensile force can be measured to monitor the tensile force. This device was inserted in the tension member like a turn-buckle. Lateral deformation may be measured in the field at any time for the purpose of maintaining structures. Finite element analysis was used to design the shape and parametric study. Six specimens were tested within the elastic range. The test result showed that the elastic behavior or the bending part was consistent with the analysis' results.

Stress Multi-Index Analysis Expression Technique (스트레스 멀티지수 분석 표현기법)

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1717-1722
    • /
    • 2008
  • A number of tools and equipment can measure the degree of stress. Stress measurement includes both psychological and physiological measurements. Considering only one of these elicits subjective or objective deficiency. Overcoming this problem requires a new stress index that combines these two measurements. Following people's personal traits, the measurement results also appear in diverse ways, but we can consider and study the general case obtained on the basis of the measurement tool. By using the index obtained by the psychological and physiological measurement tools, we obtain an integrated stress index. Therefore, we choose to use four stress measurement tools. The index of the result of each measurement tools is referred to as the multi-index. These indices are plotted on coordinates to analyze and diagnose the balance and tendency of the stress.

Sand Moisture Measurement with Microwave Technique in Free Space at X-Band Frequency (X-밴드 주파수의 마이크로파를 이용한 자유공간에서의 모래수분측정)

  • 남현수;성재용;박남석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.5
    • /
    • pp.525-533
    • /
    • 1997
  • A nondestructive moisture measurement technique has been applied to improve the previous moisture measurement method in the building research. The experiment was done in free space using horns since it is the key element for continuous and non-destructive measurement. For this purpose a microwave bridge type analyzer at the frequency of 9.5 GHz was used to determine the moisture content of sands in the range of 1~12%. From this, the representative calibration curves were obtained. This shows that moisture measurement technique using microwave is applicabe to the measurement of moisture in non-metallic materials such as coal, pulp, foods, building materials, etc.

  • PDF

A Study on Measurement System Accuracy of Theodolite System(IV) - A Measurement System Accuracy depending on a Distance of Scale Bar on the Distance 4m between two Theodolites (데오드라이트 시스템의 측정 정확도에 대한 연구(IV) - 시준거리 4m에서의 기준자 거리에 따른 측정 정도)

  • Yoon Yong-Sik;Lee Dong-Ju;Park Yo-Chang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.3
    • /
    • pp.67-73
    • /
    • 2005
  • An accuracy of theodolite system may be affected by a measurement environment and a measurement distance change from theodolite to scale bar and/or targets. This study was performed for measuring an accuracy when the distance from thodolite system to scale bar was changed $2\~6m$ on the distance 4m between two theodolites. The results showed that an accuracy was ${\pm}0.025mm$ or better when the distance from theodolite system to targets was 3, 4 and 5m. According to the results, it was found that the best distance from theodolite system to scale bar was $3\~4m$ when the collimation distance was $3\~4m$.

Effects of a Teaching Process using Dynamic Assessment : Young Children's Measurement Ability (참조물을 활용한 역동적평가의 교수과정이 유아의 측정능력에 미치는 영향)

  • Ko, Eun-Mi;Jung, Myung-Sook;Hwang, Hae-Ik
    • Korean Journal of Child Studies
    • /
    • v.29 no.1
    • /
    • pp.275-292
    • /
    • 2008
  • This study investigated the effects of a teaching process using dynamic assessment for a unit on young children's measurement ability. Subjects were 45 5-year-old children in a kindergarten in Busan. The instrument was the Dynamic Assessment Tools for Young Children's Measurement Ability (Hwang & Ko, 2(07). Assessment consisted of four steps: pre-test, learning, transfer, post-test. Results were that at post-test, there were significant differences in scores of measurement ability between the dynamic assessment and control groups. In the dynamic assessment group there was significant improvement in length, width and weight between pre- and post-tests and there were significant shifts of measurement strategies and measurement errors between the pre- and post-tests.

  • PDF

A Study on the Measurement Uncertainty of Flowmeter Calibrator (유량계 교정장치의 측정불확도에 관한 연구)

  • Im, Gi-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.561-571
    • /
    • 2001
  • The standard uncertainty of flowrate measurement is obtained by combining that of independent variables. Gravimetric and volumetric method were applied to determine the flowrate and the standard uncertainties of flowrate measurement by both methods were evaluated in accordance with the procedure recommended by International Organization for Standardization. The combined standard uncertainties of determining the flowrate were estimated from the sensitivity coefficient and the standard uncertainty of independent variables. For practical application, the methods for evaluating and expressing uncertainty in flow measurement were discussed. It was found that the uncertainties of the weighing and time measurement in gravimetric method, the volume and time measurement in volumetric method have dominant influence on that of flowrate measurement. With the quantitative analysis of the sensitivity coefficient, the contribution of the each variable uncertainty to the combined standard uncertainty of flowrate measurement is shown clearly.

A Study On Hardware Design for High Speed High Precision Neutron Measurement (고속 고정밀 중성자 측정을 위한 하드웨어 설계에 관한 연구)

  • Jang, Kyeong-Uk;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.61-67
    • /
    • 2016
  • In this paper, a hardware design method is proposed for high speed high precision neutron radiation measurements. Our system is fabricated to use a high performance A/D Converter for digital data conversion of high precision and high speed analog signals. Using a neutron sensor, incident neutron radiation particles are detected; a precision microcurrent measurement module is also included: this module allows for more precise and rapid neutron radiation measurement design. The high speed high precision neutron measurement hardware system is composed of the neutron sensor, variable high voltage generator, microcurrent precision measurement component, embedded system, and display screen. The neutron sensor detects neutron radiation using high density polyethylene. The variable high voltage generator functions as a 0 ~ 2KV variable high voltage generator that is robust against heat and noise; this generator allows the neutron sensor to perform normally. The microcurrent precision measurement component employs a high performance A/D Converter to precisely and swiftly measure the high precision high speed microcurrent signal from the neutron sensor and to convert this analog signal into a digital one. The embedded system component performs multiple functions including neutron radiation measurement for high speed high precision neutron measurements, variable high voltage generator control, wired and wireless communications control, and data recording. Experiments using the proposed high speed high precision neutron measurement hardware shows that the hardware exhibits superior performance compared to that of conventional equipment with regard to measurement uncertainty, neutron measurement rate, accuracy, and neutron measurement range.

The Study on the Development of Thrust Measurement System and Reliability Appraisal Technique for Low-Thrust Liquid Rocket Engine (저추력 액체로켓엔진의 추력 측정 장치 개발 및 신뢰도 평가 기법에 관한 연구)

  • Lee, Dong-Hyeong;Lee, Yang-Suk;Ko, Young-Sung;Kim, Yoo;Kim, Sun-Jin;Moon, Il-Yoon;Lee, Hyung-Sool
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.9-19
    • /
    • 2009
  • Accurate thrust measurement is very important when developing an engine of propulsion system. Especially for a low thrust liquid rocket engine(LRE), accuracy of thrust is seriously affected by thrust measurement errors and thurst losses which are caused by propellant supply system. In this study, a new thrust measurement system is developed for accurate thrust measurement of a low thurst LRE by minimizing these effects. Its thrust measurement range is 150~1500N and the maximum error is below 10N. Also, a reliability appraisal technique is investigated to improve reliability and accuracy of the thrust measurement system.