• Title/Summary/Keyword: 측위정밀도

Search Result 255, Processing Time 0.023 seconds

Performance Analysis of IPDL Methods Using High Resolution Channel Estimation Technique for W-CDMA systems (W-CDMA 시스템에서 고해상 채널 추정을 이용한 IPDL 기법의 무선 측위 성능분석)

  • Park, Un-Yong;Choe, Ju-Pyeong;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.6
    • /
    • pp.268-276
    • /
    • 2002
  • This paper introduces the high-resolution channel estimation technique which are used to estimate the first arrival multipath delay component. The proposed technique yields the precise estimate of the first time arrival which is directly related to the performance of TDOA-based position location. The proposed technique utilizes the transformed auto-correlation function of received common pilot signal in frequency domain, its samples compose the hermitian Toeplitz matrix at sequel. Then the time delay components could be estimated with precision by the analysis of eigen-structure of corresponding matrix. In this paper, obeying the modified CODIT model, the performance of the PR-IPDL(Pseudo Random-Idle Period Downlink) and TA-IPDL(Time Aligned-Idle Period Downlink considered as 3GPP position location technique will be exploited systematically through the computer simulations with applying the proposed technique.

Vision-based Food Shape Recognition and Its Positioning for Automated Production of Custom Cakes (주문형 케이크 제작 자동화를 위한 영상 기반 식품 모양 인식 및 측위)

  • Oh, Jang-Sub;Lee, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.10
    • /
    • pp.1280-1287
    • /
    • 2020
  • This paper proposes a vision-based food recognition method for automated production of custom cakes. A small camera module mounted on a food art printer recognizes objects' shape and estimates their center points through image processing. Through the perspective transformation, the top-view image is obtained from the original image taken at an oblique position. The line and circular hough transformations are applied to recognize square and circular shapes respectively. In addition, the center of gravity of each figure are accurately detected in units of pixels. The test results show that the shape recognition rate is more than 98.75% under 180 ~ 250 lux of light and the positioning error rate is less than 0.87% under 50 ~ 120 lux. These values sufficiently meet the needs of the corresponding market. In addition, the processing delay is also less than 0.5 seconds per frame, so the proposed algorithm is suitable for commercial purpose.

Localization Algorithms for Mobile Robots with Presence of Data Missing in a Wireless Communication Environment (무선통신 환경에서 데이터 손실 시 모바일 로봇의 측위 알고리즘)

  • Sin Kim;Sung Shin;Sung Hyun You
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.601-608
    • /
    • 2023
  • Mobile robots are widely used in industries because mobile robots perform tasks in various environments. In order to carry out tasks, determining the precise location of the robot in real-time is important due to the need for path generation and obstacle detection. In particular, when mobile robots autonomously navigate in indoor environments and carry out assigned tasks within pre-determined areas, highly precise positioning performance is required. However, mobile robots frequently experience data missing in wireless communication environments. The robots need to rely on predictive techniques to autonomously determine the mobile robot positions and continue performing mobile robot tasks. In this paper, we propose an extended Kalman filter-based algorithm to enhance the accuracy of mobile robot localization and address the issue of data missing. Trilateration algorithm relies on measurements taken at that moment, resulting in inaccurate localization performance. In contrast, the proposed algorithm uses residual values of predicted measurements in data missing environments, making precise mobile robot position estimation. We conducted simulations in terms of data missing to verify the superior performance of the proposed algorithm.

A Study on the Improvement in ability for LORAN-C System (로란-C 시스템 활용능률 향상방안 연구)

  • Goo, Ja-Heon;An, Hyo-Seung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.163-166
    • /
    • 2006
  • 본 논문에서는 지상송신국 기반의 로란-C 전파항법시스템이 위성항법시스템(GNSS)의 등장이후 급속한 이용자 감소로 운영의 효율성이 떨어짐에 따라 다양한 각도의 로란-C 성능평가를 실시하여 활용능률 향상방안을 제안하였으며, 국가항법시스템의체계인 관리를 위해 DGPS시스템과 로란-C를 연계한 GNSS 정보센터를 운영하여 GPS는 물론 Galileo, GLONASS 등 위성항법시템 전반의 상황을 모니터링하고 GNSS 불능 시 로란-C를 BACK-UP시스템으로 활용한다면 GNSS 장애로 인한 국가적대혼란의 예방함께 체계적인 전파항법시스템 관리가 가능할 것으로 결론하였다.

  • PDF

A Study on Bridge Behavior Measurement by Kinematic On The Fly Technique of GPS (GPS의 OTF 측위기법에 의한 교량의 거동 측정에 관한 연구)

  • 최병길;김영곤;정진우
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.18 no.3
    • /
    • pp.271-278
    • /
    • 2000
  • Recently, it has been partly attempted to measure behavior of large-sized bridge using GPS, but it is accomplished at the first step and unsystemically. The purpose of this research is to measure bridge behavior by Kinematic On The Fly (OTF) technique of GPS. The results of this study show that bridge behavior can be measured easily and conveniently in three dimension, monitored at the real time, and measured continuously without a break by OTF Technique of GPS.

  • PDF

Improvement of GPS Relative Positioning Accuracy by Using Crustal Deformation Model in the Korean Peninsula (GPS상대측위 정확도 향상을 위한 한반도 지각변동모델 개발)

  • Cho, Jae-Myoung;Yun, Hong-Sik;Lee, Mi-Ran
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2011
  • As of 2011, 72 Permanent GPS Stations are installed to control DGPS reference points by the National Geographic Information Institute in South Korea. As the center of the Earth's mass continues to move, the coordinates of the permanent GPS stations become inconsistent over time. Thus, a reference frame using a set of coordinates and their velocities of a global network of stations at a specific period has been used to solve the inconsistency. However, the relative movement of the permanent GPS stations can lower the accuracy of GPS relative positioning. In this research, we first analyzed the data collected daily during the past 30 months at the 40 permanent GPS stations within South Korea and the 5 IGS permanent GPS stations around the Korean Peninsula using a global network adjustment. We then calculated the absolute and relative amount of movement of the GPS permanent stations. We also identified the optimum renewal period of the permanent GPS stations considering the accuracy of relative GPS surveying. Finally, we developed a Korean a Korean crustal movement model that can be used to improvement of accuracy.

Performance Evaluation of SDS-TWR Ranging Algorithms for CPS Based on Accurate Wireless Localization (정밀한 무선측위 기반 CPS를 위한 SDS-TWR 거리측정 기법의 성능 평가)

  • Yoo, Joonhyuk;Kim, Hiecheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.9
    • /
    • pp.570-577
    • /
    • 2014
  • Range-based real time localization systems require superior localization techniques as well as accurate ranging algorithms for better performance. To evaluate the ranging accuracy between two nodes in practical environments, this paper does not only present a qualitative analysis by computing a distance equation under SDS-TWR measurement model of no symmetry assumption, but also executes a quantitative evaluation by doing experiments after building up a test network employing the developed sensor node. Experimental results show that the ranging accuracy of the proposed implementation of IEEE 802.15.4a software stack is superior with smaller average error rate by 60% to one of the commercial Nanotron's reference development kit.

Precision Improvement of Indoor Wireless Positioning by Considering Clock Offsets and Wireless Synchronization (클럭 오프셋과 무선동기를 고려한 실내 무선측위 정밀도 향상 기법)

  • Lim, Erang;Kang, Jimyung;Lee, Soonwoo;Park, Youngjin;Lee, Woncheol;Shin, Yoan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.894-900
    • /
    • 2012
  • Indoor wireless positioning system uses ranging information of beacons in order to precisely estimate a tag location. To estimate distance between each beacons and tag, the system calculates arrival time of a tag pulse with clock of each beacon including independent clock offset. This clock offset seriously affects the performance of ranging and positioning. We propose in this paper a clock offset compensation method to solve this problem. To verify the performance of the proposed method, we simulated location estimation with random clock offset between -1,000ppm and 1,000ppm, and the result shows that the proposed scheme effectively solves the clock offset problem.

Precise Positioning from GPS Carrier Phase Measurement Applying Stochastic Models for Ionospheric Delay (전리층 지연 효과의 통계적 모델을 이용한 반송파 정밀측위)

  • Yang, Hyo-Jin;Kwon, Jay-Hyoun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.319-325
    • /
    • 2007
  • In case of more than 50km baseline length, the correlation between receivers is reduced. Therefore, there are still some rooms for improvement of its positional accuracy. In this paper, the stochastic modeling of the ionospheric delay is applied and its effects are analyzed. The data processing has been performed by constructing a Kalman filter with states of positions, ambiguities, and the ionospheric delays in the double differenced mode. Considering the medium or long baseline length, both double differenced GPS phase and code observations are used as observables and LAMBDA has been applied to fix the ambiguities. The ionospheric delay is stochastically modeled by well-known 1st order Gauss-Markov process. And the correlation time and variation of 1st order Gauss-Markov process are calculated. This paper gives analyzed results of developed algorithm compared with commercial software and Bernese.

Accuracy Analysis of Precise Point Positioning Using Predicted GPS Satellite Orbits (GPS 예측궤도력을 이용한 정밀단독측위 정확도 분석)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.5
    • /
    • pp.752-759
    • /
    • 2012
  • In this paper, near-real-time positioning accuracies of precise point positioning technique were analyzed using IGS predicted orbits. As a result, we could get the mean errors of 1~1.6 cm, standard deviation of 1~1.3cm from one year of GPS data. This results were similar level to positioning accuracy using the IGS rapid orbits. Positioning errors of >10cm showed 44% of observed days of orbital anomalies. When the orbital anomalies of the predicted orbits were shown, maximum error was 1.7 km, and maximum of mean errors was 308 m. From this study, we conclude that check and consideration were necessary before using the IGS predicted orbits.