• Title/Summary/Keyword: 측위오차

Search Result 339, Processing Time 0.032 seconds

A Performance of Positioning Accuracy Improvement Scheme using Wavelet Denoising Filter (Wavelet Denoising Filter를 이용한 측위 정밀도 향상 기법 성능)

  • Shin, Dong Soo;Park, Ji Ho;Park, Young Sik;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.9-14
    • /
    • 2014
  • Recently, precision guided munition systems and missile defense systems based on GPS have been taking a key role in modern warfare. In warfare however, unexpected interferences cause by large/small scale fading, radio frequency interferences, etc. These interferences result in a severe GPS positioning error, which could occur late supports and friendly fires. To solve the problems, this paper proposes an interference mitigation positioning method by adopting a wavelet denoising filter algorithm. The algorithm is applied to a GPS/QZSS/Wi-Fi combined positioning system which was performed by this laboratory. Experimental results of this paper are based on a real field test data of a GPS/QZSS/Wi-Fi combined positioning system and a simulation data of a wavelet denoising filter algorithm. At the end, the simulation result demonstrates its superiority by showing a 21.6% improved result in comparison to a conventional GPS system.

Location Estimation Algorithm Based on AOA Using a RSSI Difference in Indoor Environment (실내 환경에서 RSSI 차이를 이용한 AOA 기반 위치 추정 알고리즘)

  • Jung, Young-Jin;Jeon, Min-Ho;Ahn, Jeong-Kil;Lee, Jung-Hoon;Oh, Chang-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.558-563
    • /
    • 2015
  • There have recently been various services that use indoor location estimation technologies. Representative methods of location estimation include fingerprinting and triangulation, but they lack accuracy. Various kinds of research which apply existing location estimation methods like AOA, TOA, and TDOA are being done to solve this problem. In this paper, we study the location estimation algorithm based on AOA using a RSSI difference in indoor environments. We assume that there is a single AP with four antennas, and estimate the angle of arrival based on the RSSI value to apply the AOA algorithm. To compensate for RSSI, we use a recursive averaging filter, and use the corrected RSSI and the Pythagorean theorem to estimate the angle of arrival. The results of the experiment, show an error of 18% because of the radiation pattern of the four non-directional antennas arranged at narrow intervals.

Bluetooth Beacon Planing Considering Position Estimation Accuracy in Small and Isolated In-Door Environment (소형독립공간에서 실내측위 정확도를 고려한 블루투스 비컨 위치선정)

  • Ahn, Heejune;Thuy, Tran Vinh;Lee, Ye Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.7
    • /
    • pp.1307-1312
    • /
    • 2015
  • The recent adoption of Bluetooth LE technology in smart phones triggered commercial interest in RSSI-based positioning technology. Estimation error in RSSI measurement due to the antenna pattern, multipath fading, environmental noise has to be considered for designing beacon systems. The paper proposes an analysis method and beacon planning rules for a small and isolated indoor service area, based on probabilistic model of RSSI estimation error. As an practically important guide, the beacons have to be installed at the boundary of the service area to minimize the maximum position error, whereas the beacons have to be evenly distributed in the service space to minimize the average estimation error.

Deisgn and Implementation of RTK-GPS Error Correction Signal Transmission System for Long-Distance using the TCP/IP (TCP/IP를 이용한 RTK-GPS 보정 신호 장거리 전송 시스템의 설계 및 구현)

  • Jo, Ik-Seong;Im, Jae-Hong
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.127-134
    • /
    • 2002
  • GPS is one of today's most widely used surveying techniques. But, users can't acquire an enough accuracy in applications of the navigation or geodesy by the GPS positioning technique because of the effects of the ionosphere and troposphere and US DoD's systematic errors. The solution of these restrictions is the DGPS technique that is to eliminate the common errors and can achieve a high accuracy. Although of sufficient density for good DGPS, accuracy of positioning is just not dense enough to provide complete coverage for real-time positioning, because distances between base and rover is short. In this paper, we designed and implemened a RTK-GPS error correction signal transmission system for long-distance using the TCP/IP, which consist of TCP, UDP and IP, which allows a user to increase the distance at which the rover receiver is located from the base, due to radio modem.

Error Assessment of Attitude Determination Using Wireless Internet-Based DGPS (무선인터넷기반의 DGPS를 이용한 동체의 자세결정 성능평가)

  • Lee Hong Shik;Lim Sam Sung;Park Jun Ku
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.2
    • /
    • pp.101-108
    • /
    • 2005
  • Inertial Navigation System has been used extensively to determine the position, velocity and attitude of the body. An INS is very expensive, however, heavy, power intensive, requires long setting times and the accuracy of the system is degraded as time passed due to the accumulated error. Global Positioning System(GPS) receivers can compensate for the Inertial Navigation System with the ability to provide both absolute position and attitude. This study describes a method to improve both the accuracy of a body positioning and the precision of an attitude determination using GPS antenna array. Existing attitude determination methods using low-cost GPS receivers focused on the relative vectors between the master and the slave antennas. Then the positioning of the master antenna is determined in meter-level because the single point positioning with pseudorange measurements is used. To obtain a better positioning accuracy of the body in this research, a wireless internet is used as an alternative data link for the real-time differential corrections and dual-frequency GPS receivers which is expected to be inexpensive was used. The numerical results show that this system has the centimeter level accuracy in positioning and the degree level accuracy in attitude.

Study on the Positioning Method using BLE for Location based AIoT Service (위치 기반 지능형 사물인터넷 서비스를 위한 BLE 측위 방법에 관한 연구)

  • Ho-Deok Jang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • Smart City, a key application area of the AIoT (Artificial Intelligence of Things), provides various services in safety, security, and healthcare sectors through location tracking and location-based services. an IPS (Indoor Positioning System) is required to implement location-based services, and wireless communication technologies such as WiFi, UWB (Ultra-wideband), and BLE (Bluetooth Low Energy) are being applied. BLE, which enables data transmission and reception with low power consumption, can be applied to various IoT devices such as sensors and beacons at a low cost, making it one of the most suitable wireless communication technologies for indoor positioning. BLE utilizes the RSSI (Received Signal Strength Indicator) to estimate the distance, but due to the influence of multipath fading, which causes variations in signal strength, it results in an error of several meters. In this paper, we conducted research on a path loss model that can be applied to BLE IPS for proximity services, and confirmed that optimizing the free space propagation loss coefficient can reduce the distance error between the Tx and Rx devices.

Improving Location Positioning using Multiple Reference Nodes in a LoRaWAN Environment (LoRaWAN 환경에서 다중 레퍼런스 노드를 이용한 위치 측위 향상 기법)

  • Kim, Jonghun;Kim, Ki-Hyung;Kim, Kangseok
    • KIISE Transactions on Computing Practices
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Low-power long-range networks (LoRa) has a comprehensive coverage of up to 30 km, so that long-range positioning is possible. However, the position error in the current LoRa environment is over 500 m. This makes it difficult to use practical location services in the LoRa environment. In this paper, we propose a method to improve the position accuracy by correcting an inaccurate visual error when sending a signal from a mobile node to a gateway through the reference node of each zone in the LoRa environment. Experiments were carried out using MATLAB, and a radio propagation algorithm, the Hata model, was used to cancel out the stationary noise and to evaluate the environmental noise. Experimental results showed that the error range decreased as the number of reference nodes increased and a mobile node approach the reference node.

Alternative Scheme of INS-Dependent Positioning for Relative Navigation without GRUs (GRU 부재 상대항법에서의 INS 의존 측위 대체 방안)

  • Kim, Ki-hyoung;Lee, Kyu-man;Lim, Jae-sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.12
    • /
    • pp.2520-2527
    • /
    • 2015
  • Position information is important to carry out military operations. In general, GPS is used to estimate position. However, GPS is vulnerable to jamming due to the low received signal strength, therefore GPS can be easily jammed. The relative navigation is an auxiliary navigation system defined in JTIDS. When GPS is jammed, the relative navigation requires ground reference units on the ground to operate accurately. If the ground reference unit does not exist, nodes operated by the relative navigation depend on the inertial navigation system to identify their position. However, this positioning scheme based on only INS causes accumulative position error, therefore the nodes cannot identify their position accurately for a long time. In this paper, we propose an alternative to reduce position error generated by depending inertial navigation system. In order to verify that the performance of proposed scheme is better than that of the existing scheme, various simulations are conducted.

Design of Clock Synchronization Scheme for Pseudolite (의사위성 시각동기 기법 설계)

  • Lee, Ju Hyun;Hwang, Soyoung;Yu, Dong-Hui;Lee, Sang Jeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1312-1317
    • /
    • 2013
  • Pseudolite is a contraction of the term "pseudo-satellite", used to refer to something that is not a satellite which performs a function commonly in the domain of satellites. Pseudolite are most often small transceivers that are used to create a local, ground-based GPS alternative. Pseudo-range measurement of pseudolite has around 300m range error, when time synchronization error of $1{\mu}sec$ occurs. Therefore the time synchronization methods play an important part in navigation augmentation using pseudolite. This paper proposes three clock synchronization methods that are installation method of pseudolite station, method using KRISS-UTC and method using PRN code phase difference for pseudolite. The simulation platform structure is presented for evaluating proposed clock synchronization performance.

A Study on Distance Calculation Revision Algorithm using the Filtering of RSSI Measurement Results (RSSI 측정결과 필터링을 이용한 거리계산 보정 알고리즘에 관한 연구)

  • Kim, Ji-seong;Kim, Yong-kab
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2017
  • The indoor location based service proposed in the study was assigned to target a moving user. Positioning in the outdoor environment is accurate while using GPS. However, in an indoor environment, positioning is inaccurate and difficult. In order to overcome this, studies of various techniques for positioning based on wireless communication such as Wi-Fi, Zigbee and Bluetooth are being performed. The RSSI value and the delivery signal of the bluetooth beacon are measured according to the distance, and to a database. It was applied calculating the value for the average RSSI and the RSSI filtering feedback. Filtering is used to reduce the error of the RSSI values that are measured at long distance. When average and feedback filtering coefficient are set with 0.5, irregular and highly RSSI values are decreased. As the distance increases, the range of error is confirmed to have a reduction when using a distance calculation correction algorithm. Finally, when using the RSSI measurement results filtering, it corrects an unstable signal. Also, the distance correction algorithm is used to reduce a range of errors.