• Title/Summary/Keyword: 측온저항체

Search Result 20, Processing Time 0.051 seconds

The Development of Platinum Thin Film RTD Temperature Sensors (백금박막 측온저항체 온도센서의 개발)

  • 노상수;최영규;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.152-155
    • /
    • 1996
  • Platinum thin films were deposited on $Al_2$O$_3$substrate by DC magnetron sputtering for RTD(Resistance Thermometer Devices) temperature sensors. We made Pt resistance pattern on $Al_2$O$_3$substrate by lift-off method and fabricated Pt-RTD temperature sensors by using W-wire, silver epoxy and SOG(spin-on-glass). In the temperature range of 25~40$0^{\circ}C$, we investigated TCR(temperature coefficient of resistance) and resistance ratio of Pt-RTD temperature sensors. TCR values were increased with increasing the annealing temperature, time and the thickness of Pt thin films. Resistance values were varied lineally within the range of measurement temperature. At annealing temperature of 100$0^{\circ}C$, annealing time of 240min and thin film thickness of 1${\mu}{\textrm}{m}$, we obtained Pt-RDT TCR value of 3825ppm/$^{\circ}C$ closed to the Pt bulk value.

  • PDF

Characteristics of Thin-film Type Pt-RTD's Fabricated on Si Wafers (Si기판상에 제작된 박막형 백금 측온저항체 온도센서의 특성)

  • 홍석우;노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.354-357
    • /
    • 1999
  • This paper describes on the electrical and physical charateristics thin-film type Pt-RTD\\`s on Si wafers, in which MgO thin-films were used as medium layer in order to improve adhesion of Pt thin-films to SiO$_2$ layer. The MgO medium layer had the properties of improving Pt adhesion to SiO$_2$ and insulation without chemical reaction to Pt thin-films and the resistivity of Pt thin-films was improved. In the analysis of properties of Pt-RTD, TCR value had 3927 ppm/$^{\circ}C$ and liner in the temperature range of room temperature to 40$0^{\circ}C$

  • PDF

The Study on Fabrication of Platinum Thin Films for RTD (측온저항체 온도센서용 백금 박막의 형성에 관한 연구)

  • Noh, Sang-Soo;Choi, Young-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.242-244
    • /
    • 1996
  • Platinum thin films were deposited on Si-wafer by DC magnetron sputtering for RTD (Resistance Thermometer Devices). We investigated the physical and electrical characteristics of these films under various conditions, the input power, working vacuum, temperature of substrate and also after annealing these films. The Resistivity and Sheet Resistivity were decreased with increasing the temperature of substrate and the annealing time at $1000^{\circ}C$. At substrate temperature $300^{\circ}C$, input power 7(w/$cm^2$), working vacuum 5mtorr and annealing conditions $1000^{\circ}C$, 240min we obtained $10.65{\mu}{\Omega}{\cdot}cm$, Resistivity of Pt thin film and $3000{\sim}3900ppm/^{\circ}C$, TCR(temperature coefficient of resistance) closed to the bulk value.

  • PDF

The Study on Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors (측온저항체 온도센서용 Pt-Co 합금박막의 형성에 관한 연구)

  • Kim, Seo-Yeoun;Noh, Sang-Soo;Choi, Young-Kyu;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1485-1487
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on $Al_2O_3$ substrates by co sputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on $Al_2O_3$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under sputtering conditions (; the input power, working vacuum), annealing conditions (; temperature, time) and also after annealing these films. After the annealing treatment at $800^{\circ}C$ for 60min, the resistivity and sheet resistivity of Pt-Co thin films was $0.0302{\mu}{\Omega}{\cdot}cm$ and $0.1{\Omega}/{\square}$, respectively, and the TCR value of Pt-Co RTD was $3600ppm/^{\circ}C$ in the temperature range of $25{\sim}400^{\circ}C$. These results indicate that Pt-Co thin films have potential for the excellent RTD temperature sensors.

  • PDF

Fabrication of Pt-Co Alloy Thin Films RTD Temperature Sensors (Pt-Co 합금박막 측온저항체 온도센서의 제작)

  • 홍석우;서정환;정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.431-434
    • /
    • 1998
  • Platinum-Cobalt alloy thin films were deposited on Al$_2$O$_3$ substrate by r.f. cosputtering for RTD temperature sensors. We made Pt-Co alloy resistance patterns on the Al$_2$O$_3$ substrate by lift-off method and investigated the physical and electrical characteristics of these films under various conditions (the input power, working vacuum, annealing temperature, thickness of thin films) and also after annealing these films. At input power of Pt : 4.4 W/$\textrm{cm}^2$, Co : 6.91 W/$\textrm{cm}^2$, working vacuum on and annealing conditions of 1000 $^{\circ}C$ and 60 min, the resistivity and the sheet resistive thin films were 15 ${\mu}$$\Omega$$.$cm and 0.5 $\Omega$/$\square$, respectively. The TCR value of Pt-Co a films was measured with various thickness of thin films and annealing temperature. T TCR value is gained under condition 3000${\AA}$ of thin films thickness and 1000$^{\circ}C$ of temperature. These results indicate that Pt-Co alloy thin films have potentiality for the wide temperature ranges.

  • PDF

The Formation of Pt-Co Alloy Thin Films for RTD Temperature Sensors with Wide Temperature Ranges (광대역 측온저항체 온도센서용 Pt-CO 합금박막의 형성)

  • 김서연;노상수;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.335-338
    • /
    • 1997
  • Platinum-Cobalt alloy thin films were deposited on A1$_2$O$_3$substrate by magnetron cosputtering for RTD temperature sensors with wide temperature ranges. We made Pt-Co alloy resistance patterns on the A1$_2$O$_3$substrate by lift-off method and fabricated Pt-Co alley RTD temperature sensors by using Pt-wire, Pt-paste. We investigated the physical and electrical characteristics of theme films under various conditions, input power, working vacuum, annealing temperature and time, and also after annealing these films. The resistivity and sheet resistivity of these films were decreased with increasing the annealing temperature. At input power of Pt : 4.4 W/cm$^2$, Co : 6.91 W/cm$^2$, working vacuum of 10 mTorr and annealing conditions of 800$^{\circ}C$ and 60 min, the resistivity and sheet resistivity of Pt-Co thin films was 15${\mu}$$\Omega$$.$cm and 0.5$\Omega$/ , respectively, and the TCR value of Pt-Co alloy thin films with thickness of 3000${\AA}$ was 3740ppm/$^{\circ}C$ in the temperature range of 25∼600$^{\circ}C$. These results indicate that Pt-Co alloy thin films hove potentiality for the RTD with wide temperature ranges.

  • PDF

A Study on the Electrical Properties of Pt Thin film RTD for Temperature Sensor (온도센서용 Pt박막 측온저항체의 전기적 특성에 관한 연구)

  • 문중선;정광진;최성호;조동율;천희곤
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.3-9
    • /
    • 1999
  • Pt thin film of about 7000$\AA$ thickness was deposited on the alumina substrate using DC Magnetron Sputter and the characteristics of the film for temperature sensor were investigated. When film of about 7000$\AA$ thickness was deposited at working gas pressure of $2.0{\times}10^{-3}$torr, sputtering power of 50W, substrate temperature of $350^{\circ}C$(Ts), sheet resistance(Rs), resistivity($\rho$) and temperature coefficient of resistivity(TCR) of the film were respectively 0.39$\Omega$/$\square$, 27.60$\mu\Omega$-cm and $3350 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min in hydrogen ambient, Rs, $\rho$ and TCR were respectively 0.236$\Omega$/$\square$, 15.18$\mu\Omega$-cm and 3716 ppm/$3716 ppm/^{\circ}C$. When working gas of 15sccm oxygen and 100sccm Argon were used, Rs, $\rho$ and TCR were respectively 0.335$\Omega$/$\square$, 22.45$\mu\Omega$-cm and $3427 ppm/^{\circ}C$. When the film was annealed at $1000^{\circ}C$ for 240min, Rs, $\rho$and TCR were respectively 0.224/$\Omega$$\square$, 14$\mu\Omega$-cm and $3760 ppm/^{\circ}C$ and the characteristics of the film were much improved.

  • PDF

Study on Pt thin film property of Resistance Temperature Detect (측온 저항체의 Pt 박막 특성 연구)

  • Park, Jung-Ho;Ji, Mi-Jung;Choi, Byung-Heon;Lee, Jung-Min;Ju, Byeong-Kwon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.29-29
    • /
    • 2008
  • Platinum Thin films were deposited on $Al_2O_3$ by Rf magnetic Sputtering. The physical and electrical characteristics of these films were analyzed under various deposition conditions(Ar gas pressure, input power, substrate temperature.) and annealing condition. The deposition rate was increased with increasing the input power but not increased linear. In the other factor, The Pt thin films property was associated with resistance. so lower resistance had more and more good Pt thin films condition. For the purpose of this study, we will get the best Pt thin film characteristics.

  • PDF

Fabrication and Performance Evaluation of Temperature Sensor Matrix Using a Flexible Printed Circuit Board for the Visualization of Temperature Field (온도장 가시화를 위한 연성회로기판을 이용한 온도센서 어레이 제작 및 성능평가)

  • Ahn, Cheol-Hee;Kim, Hyung-Hoon;Cha, Je-Myung;Kwon, Bong-Hyun;Ha, Man-Yeong;Park, Sang-Hu;Jeong, Ji-Hwan;Kim, Kui-Soon;Cho, Jong-Rae;Son, Chang-Min;Lee, Jung-Ho;Go, Jeung-Sang
    • Journal of the Korean Society of Visualization
    • /
    • v.7 no.2
    • /
    • pp.17-21
    • /
    • 2010
  • This paper presents the fabrication and performance measurement of a temperature sensor array on a flexible substrate attachable to a curved surface using MEMS technology. Specifically, the fabrication uses the well-developed printed circuit board fabrication technology for complex electrode definition. The temperature sensor array are lifted off with a $10{\times}10$ matrix in a $50\;mm{\times}50\;mm$ to visualize temperature distribution. Copper is used as temperature sensing material to measure the change in resistances with temperature increase. In a thermal oven with temperature control, the temperature sensor array is Characterized. The constant slope of resistance change is obtained and temperature distribution is measured from the relationship between resistance and temperature.

The Influence of Ventilation and Shade on the Mean Radiant Temperature of Summer Outdoor (통풍과 차양이 하절기 옥외공간의 평균복사온도에 미치는 영향)

  • Lee, Chun-Seok;Ryu, Nam-Hyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.100-108
    • /
    • 2012
  • The purpose of the study was to evaluate the influence of shading and ventilation on Mean Radiant Temperature(MRT) of the outdoor space at a summer outdoor. The Wind Speed(WS), Air Temperature(AT) and Globe Temperature(GT) were recorded every minute from $1^{st}$ of May to the $30^{th}$ of September 2011 at a height of 1.2m above in four experimental plots with different shading and ventilating conditions, with a measuring system consisting of a vane type anemometer(Barini Design's BDTH), Resistance Temperature Detector(RTD, Pt-100), standard black globe(${\O}$ 150mm) and data acquisition systems(National Instrument's Labview and Compfile Techs' Moacon). To implement four different ventilating and shading conditions, three hexahedral steel frames, and one natural plot were established in the open grass field. Two of the steel frames had a dimension of $3m(W){\times}3m(L){\times}1.5m(H)$ and every vertical side covered with transparent polyethylene film to prevent lateral ventilation(Ventilation Blocking Plot: VP), and an additional shading curtain was applied on the top side of a frame(Shading and Ventilation Blocking Plot: SVP). The third was $1.5m(W){\times}1.5m(L){\times}1.5m(H)$, only the top side of which was covered by the shading curtain without the lateral film(Shading Plot: SP). The last plot was natural condition without any kind of shading and wind blocking material(Natural Open Plot: NP). Based on the 13,262 records of 44 sunny days, the time serial difference of AT and GT for 24 hour were analyzed and compared, and statistical analysis was done based on the 7,172 records of daytime period from 7 A.M. to 8 P.M., while the relation between the MRT and solar radiation and wind speed was analyzed based on the records of the hottest period from 11 A.M. to 4 P.M.. The major findings were as follows: 1. The peak AT was $40.8^{\circ}C$ at VP and $35.6^{\circ}C$ at SP showing the difference about $5^{\circ}C$, but the difference of average AT was very small within${\pm}1^{\circ}C$. 2. The difference of the peak GT was $12^{\circ}C$ showing $52.5^{\circ}C$ at VP and $40.6^{\circ}C$ at SP, while the gap of average GT between the two plots was $6^{\circ}C$. Comparing all four plots including NP and SVP, it can be said that the shading decrease $6^{\circ}C$ GT while the wind blocking increase $3^{\circ}C$ GT. 3. According to the calculated MRT, the shading has a cooling effect in reducing a maximum of $13^{\circ}C$ and average $9^{\circ}C$ MRT, while the wind blocking has heating effect of increasing average $3^{\circ}C$ MRT. In other words, the MRT of the shaded area with natural ventilation could be cooler than the wind blocking the sunny site to about $16^{\circ}C$ MRT maximum. 4. The regression and correlation tests showed that the shading is more important than the ventilation in reducing the MRT, while both of them do an important role in improving the outdoor thermal comfort. In summary, the results of this study showed that the shade is the first and the ventilation is the second important factor in terms of improving outdoor thermal comfort in summer daylight hours. Therefore, it can be apparently said that the more shade by the forest, shading trees etc., the more effective in conditioning the microclimate of an outdoor space reducing the useless or even harmful heat energy for human activities. Furthermore, the delicately designed wind corridor or outdoor ventilation system can improve even the thermal environment of urban area.