• Title/Summary/Keyword: 측선수

Search Result 257, Processing Time 0.028 seconds

A Measurement and Analysis for the Discharge Calibration of the Skew Bridge (사교에서의 유량측정치보정을 위한 실측 및 분석)

  • Jeon, Byung-Hark;Lee, Jae-Hyug;Kim, Jeong-Nam;Kim, Sung-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.684-684
    • /
    • 2012
  • 하천유량측정은 불가피하게 사교형태의 교량에서 측정을 해야하는 경우가 적지 않다. 이러한 교량에서의 유량측정은 수위-단면적이 과대산정되어 유량 역시 크게 산정되므로 이에 대한 보정을 필요로 한다. 본 연구에서는 왕숙천에 위치한 퇴계원 수위관측소 하류 400m 위치에서의 도섭법을 통한 횡단면 측선각도 변화에 따른 유량차의 비교와 오산천에 위치한 약 $45^{\circ}$ 사교(탑동대교)의 탑동 수위관측소 위치의 교량법을 이용한 유량측정 성과, 한탄강에 위치한 약 $15^{\circ}$ 사교(한탄대교)의 전곡 수위관측소 상류 1km에 위치한 한탄대교에서의 교량법 측정 성과에 따른 유량차를 비교 분석하였다. 한강유역 왕숙천, 오산천, 한탄강에 위치한 퇴계원 지점, 탑동 지점, 전곡 지점에서 실시간 수위에 따른 유속을 측정하였으며, 퇴계원 지점에서는 횡단면에 직각인 측선을 기준 값으로 제시하고, 횡단방향각의 정도를 $10^{\circ}$, $30^{\circ}$, $50^{\circ}$으로 늘려 산정을 하였고, 탑동과 전곡 지점에서는 사교에서의 횡단각을 측정하여 사교의 각을 산정한 후 보정 전 후의 유량 값을 비교 분석하였다. 측정에 사용된 기기는 Price AA 유속계이고, 측정방법은 도섭법과 교량법을 적용하였다. 그 결과 직각인 측선에서 측정한 유량보다 사교형태에서 측정한 유량이 크게 산정되었다. 각 지점의 보정전 후 유량비는 탑동 지점 약 41.42%, 전곡 지점 약 3.53%로 산정되어 $15^{\circ}$ 사교의 전곡 지점에 비해 $45^{\circ}$ 사교의 탑동 지점의 보정전 후 유량차이가 크게 나타남에 따라 각이 클수록 유량 역시 과대하게 산정됨을 알 수 있었다. 따라서 유량측정을 실시할 경우 유량의 흐름방향을 기준으로 직각의 유량측정을 실시하여 유량을 산정하되 부득이한 경우로 사교에서의 측정이 이루어졌을시 흐름 방향을 기준으로 각도를 측정하여 크게 나타나는 수위-단면적에 각보정하여 유량을 산정함이 오차를 줄일 수 있으며, 신뢰성 있는 유량자료 생산의 방법이라 할 수 있겠다.

  • PDF

Seismic exploration for understanding the subsurface condition of the Ilwall-dong housing construction site in Pohang-city, Kyongbook (경북 포항시 일월동 택지개발지구의 지반상태 파악을 위한 탄성파탐사)

  • Seo, Man Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.45-56
    • /
    • 1999
  • Seismic refracrion and reflection surveys were conducted along an E-W trending track of 482 m long in Ilwall-dong, Pohang. End-on spread was employed as source-receiver configuration with 2 m for both geophone interval and offset. Seismic data were acquired using 24 channels at every shot fired every 2 m along the track. Refraction data were interpreted using equations for multi-horizontal layers. Reflection data were processed in the sequence of trace edit, gain control, CMP sorting, NMO correction, mute, common offset gathering, and filtering to produce a single fold seismic section. There are two layers in shallow subsurface of the study area. Upper layer has the P-wave velocities ranging from 267 to 566 m/s and is interpreted as a layer of unconsolidated sediments. Lower layer has P-wave velocities of 1096-3108 m/s and is interpreted as weathered rock to hard rock. Most of the lower layer classified as soft rock. Upper layer has lateral variations in both P-wave velocity and thickness. The upper layer in the eastern part of the seismic line is 3-5 m thick and has P-wave velocity of 400 m/s in average. The upper layer in the western part is 8-10 m thick and has P-wave velocity of 340 m/s in average. The eastern part is interpreted as unconsolidated beach sand, while the western part is interpreted as infilled soil to develop a construction site. Three fault systems of high angle are imaged in seismic reflection section. It is interpreted that the area between these fault systems are relatively safe. Large buildings should be located in the safe ground condition of no fault and footings should be designed to be in the basement rock of 3-10 m deep below the surface.

  • PDF

Accuracy Comparisons between Traditional Adjustment and Least Square Method (최소제곱법을 적용한 지적도근점측량 계산의 정확도 분석)

  • Lee, Jong-Min;Jung, Wan-Suk;Lee, Sa-Hyung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.117-130
    • /
    • 2015
  • A least squares method for adjusting the horizontal network satisfies the conditions which is minimizing the sum of the squares of errors based on probability theory. This research compared accuracy of 3rd cadastral control points adjusted by traditional and least square method with respect to the result of Network-RTK. Test results showed the least square method more evenly distribute closure error than traditional method. Mean errors of least square and traditional adjusting method are 2.7cm, 2.2cm respectively. In addition, blunder in angle observations can be detected by comparing position errors which calculated by forward and backward initial coordinates. However, distance blunder cannot offer specific observation line occurred mistake because distance error propagates several observation lines which have similar directions.

Genetic Variation of Larval Stripe Patterns of Spodoptera exigua(Hubner) (파밤나방(Spodoptera exigua (H bner)) 유충 줄무늬 형질의 유전변이)

  • 김용균
    • Korean journal of applied entomology
    • /
    • v.37 no.2
    • /
    • pp.163-170
    • /
    • 1998
  • Larval morphological characters such as body color and stripe pattern were analyzed to get morphological genetic markers of beet armyworm, Spodoptera exigua (Hiibner). Body color was varied from light green to dark brown with diets. Stripe characters were classified by the presence of dorsal and lateral lines: three stripes with both lines, one stripe with dorsal line only, and zero stripe. Proportions of each stripe character increased with successive selections for its own character. Three stripe was dominant to one stripe when they were crossed. The estimated heritability in narrow sense (h2) of the stripe pattern was 0.50k0.42. About two fold more females than males were produced in zero stripe line. Stripe pattern was not significantly changed by different diets except in welsh onion which had lower proportion of three stripe individuals than that of the expected. Larval stripe pattern was also correlated with larval and pupal developmental rates and cold hardiness but not with insecticide susceptibility.

  • PDF

A Study on the Scale of the Family Labridae(Pisces : Perciformes) from Korea (한국산(韓國産) 놀래기과(科) 어류(魚類)의 비늘형태에 관한 연구(硏究))

  • Kim, Yong-Uk;Koh, Jeong-Rack
    • Korean Journal of Ichthyology
    • /
    • v.6 no.2
    • /
    • pp.160-171
    • /
    • 1994
  • The lateral line scales of the Labridae fish are ellipse, pentagoanl, or hexagonal, but most of them are the hexagonal type. Those of Ciarrhilabrus temminckii, ellipse, Xyrichtys dea, Choerodon azurio, Semicossyphus reticulatus and Bodianus oxycephalus are pentagonal. The most complex species are Choerodon azurio which is pentagonal, but similar tohexagonal, and Pteragogus flagellifera which is hexagonal, but similar to pentagonal type. The sizes of sensory tubes for the Labroides dimidiatus and Cheilio inermis were larger than the other group and Xyrichtys dea had most narrow one. These varied sizes of sensory tube indicate that development of sensory tube is deeply connected with inhabitation.

  • PDF

Bedrock Depth Variations and Their Applications to identify Blind Faults in the Pohang area using the Horizontal-to-Vertical Spectral Ratio (HVSR) (포항지역 HVSR에 의한 기반암 심도와 단층 식별 연구)

  • Kang, Su Young;Kim, Kwang-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.188-198
    • /
    • 2022
  • Some deep faults do not reach the ground surface and are seldom recognized. Gokgang Fault area in the east of the Heunghae area of the Pohang basin has been selected to confirm the feasibility of the Horizontal-to-Vertical Spectral Ratio (HVSR) approach to identify blind faults. Densely spaced microtremor data have been acquired along two lines in the study area and processed to obtain resonance frequencies. An empirical relationship between the resonance frequency and the bedrock depth was proposed using borehole data available in the study area. Resonance frequencies along two lines were then converted to bedrock depths. The resulting depth profiles show significant lateral variations in the bedrock depth. As expected, considerable variation in the resonance frequency is observed near the Gokgang fault. The depth profiles also present additional significant variations in the resonance frequencies and the bedrock depths. The feature is presumably related to a blind fault that is previously unknown. Therefore, this case study confirms the feasibility of the HVSR technique to identify faults otherwise not recognized on the surface.

A Study on Geoelectrical Structure of Jeju Island Using 3D MT Inversion of 2D Profile Data (2차원 MT 자료의 3차원 역산을 통한 제주도 지전기구조 연구)

  • Choi, Ji-Hyang;Kim, Hee-Joon;Nam, Myung-Jin;Lee, Tae-Jong;Han, Nu-Ree;Lee, Seong-Kon;Song, Yoon-Ho;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.268-274
    • /
    • 2007
  • Traditional two-dimensional (2D) interpretation of magnetotelluric (MT) data utilizes only transverse magnetic (TM)-mode data, because 2D inversion of transverse electric (TE)-mode data results in spurious features when 3D structures exist in the subsurface. The application of a 3D inversion algorithm to a single MT profile can reduce contamination due to off-profile anomalies and help us to incorporate TE-mode data in the interpretation. In this study, we conduct 2D and 3D inversions of MT data observed along two lines in Jeju Island. First, we invert apparent resistivities and phases in the TM and TE modes separately. Then, we perform 2D joint inversion of both TM- and TE-mode data and 3D inversion of both Zxy- and Zyx-mode data corresponding to TE- and TM-mode data in 2D. The resistivity images derived from all four data show that the geoelectrical structure in Jeju Island is a three-layered earth with the resistive-conductive-resistive stratigraphy within a depth of 5 km. The 3D inversion does not produce clear anomalies in the reconstructed profile image, while all of 2D do. This attributed to the possibility that 2D inversion results are distorted by exiting off-profile 3D anomalies in Jeju. With 3D inversion of 2D profile MT data, we can deduce more reliable results that are not seriously distorted by off-profile 3D anomalies.

Bed Change Monitoring for Downstream of Gangjeong-Goryeong Weir (강정고령보 하류 하상변동 모니터링)

  • Ko, Joo Suk;Kwak, Sunghyun;Cho, Hanil;Lyu, Siwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.369-373
    • /
    • 2015
  • 본 연구에서는 낙동강 강정고령보에서 달성보 구간에 대한 지속적 지형조사를 통해 다기능보 건설 및 운영으로 인한 하천지형의 변화양상과 정도를 파악하고자 하였다. 이를 위하여 4대강살리기사업 이전의 측량성과(낙동강하천기본계획, 2009년)를 기준으로 보 건설 및 하도정비 이후인 2013년과 2015년에 실측한 지형자료와 비교하였다. 2013년과 2015년 지형자료 취득은 대상구간(강정고령보~달성보: 23 km) 내 하도와 홍수터에 대해 각각 단일 및 다중빔 음향측심기와RTK-GPS 등의 측량장비를 이용하여 40 m 이상의 평면공간해상도를 가지도록 수행하였다. 대상구간 내 하천기본계획 지정 횡단측선에 대해 2013년과 2015년 지형정보를 비교함으로써 보 건설 및 하도정비로 인한 지형변화양상과 정도를 파악하고자 하였다. 특정 측선에서의 횡단지형자료인 2009년 측량성과와 비교하여 2013년과 2015년 실측자료는 전체 대상구간에 대한 3차원 공간정보를 제공함으로써 이들 간의 정성, 정량적 비교를 통하여 보 건설 및 운영을 통한 하도내 국부적 지형변화의 정도와 양상을 파악할 수 있었다. 이를 통해 하천의 지형학적, 수리학적 특성뿐만 아니라 보 건설 및 하도정비 등의 물리적 여건변화에 따른 특정 하천구간에 대한 시 공간적 지형변화특성을 파악할 수 있었으며, 이는 향후 하천관리 및 설계를 위한 연구와 실무에 널리 활용될 수 있을 것으로 기대된다.

  • PDF

Feasibility of 3D Dipole-Dipole Electrical Resistivity Method to a Vein-Type Ore Deposit (국내 맥상광체조사를 위한 3차원 쌍극자-쌍극자 전기비저항 탐사의 적용성 분석)

  • Min, Dong-Joo;Jung, Hyun-Key;Lee, Hyo-Sun;Park, Sam-Gyu;Lee, Ho-Yong
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.3
    • /
    • pp.268-277
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore deposit survey in literature. Geophysical surveys have been applied to the investigation of both metallic and non-metallic ore deposit. For metallic ore-deposit survey, the 2D electrical resistivity method has been popularly used, because metallic mineral deposits are generally more conductive than surrounding media. However, geological structures are 3D rather than 2D structures, which may lead to misinterpretation in 2D inversion section. In this study, 3D effects are examined for several 3D structures such as a width-varying dyke model and a wedge-shaped model. We also investigate the effects of the direction of survey line. Numerical results show that the width-varying dyke model yields some low resistivity zone in the deep part, which is independent of real ore-body location. For the wedge-shaped model, even though the survey line is located apart from the ore body, the 2D inversion section still shows low resistivity zone in the deep part. When the survey line is not perpendicular to the strike of the ore body, the low resistivity zone is slightly broader but shallower than that obtained along the survey line perpendicular to the strike. For the survey lines that have an angle smaller than $45^{\circ}$ with the strike of the ore body, the inversion results are totally distorted. From these results, we conclude that 2-D survey and interpretation can lead to misinterpretation of subsurface structures, which may be linked to economical loss. Eventually, we recommend to apply 3-D rather than 2-D electrical resistivity survey for ore-deposit survey.

Interpretation on the subsurface velocity structure by seismic refraction survey in tunnel and slope (탄성파 굴절법 탐사를 이용한 지반 속도분포 해석-터널 및 절토 사면에의 적용 사례)

  • You Youngjune;Cho Chang Soo;Park Yong Soo;Yoo In Kol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.48-64
    • /
    • 1999
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsurface velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etc. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data quality Geophone spacing of 3 to 5m is recommended in the land slope area for house land development and 5 to 10m in the tunnel site. In refraction tomography technique, the number of source points should be more than a half of available channel number of instrument, which can make topographic effect ignorable. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700${\~}$1,200m/s, soft rock 1,200${\~}$1,800m/s. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss. In case of tunnel site, it is recommended in tunnel design and construction to consider that tunnel is in contact with soft rock layer where three lineaments intersecting each other are recognized from the results of the other survey.

  • PDF