• Title/Summary/Keyword: 측로전달음

Search Result 5, Processing Time 0.018 seconds

Field Measurement of Airborne Sound Insulation for Noise Reduction about Community Facilities in an Apartment Complex (공동주택 단지 내 주민공동시설의 소음 방지를 위한 공기전달음 차단 성능 현장 조사)

  • Seong, Yo-Han;Kim, Jin-Sik;Kim, Hye-Won;Cho, Seong-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.249-250
    • /
    • 2023
  • The objective of this study is to evaluate the airborne sound insulation performance between housing units and community facilities during the construction phase. Community facilities adjacent to housing units can lead to noise problems, hence it is necessary to minimize noise transmission during the design phase. However, flanking noise transmitted through gaps of structures, windows, pipes, and other openings may result in substandard sound insulation performance falling below the design standards. Therefore, It is crucial to measure airborne sound insulation in the field during the construction phase. The measurement was conducted using the survey method for the field measurement of the airborne sound insulation in accordance with KS F ISO 10052:2021. Although the noise standards caused by community facilities in apartment complexes are not specified in current laws and regulations, desired noise level was set based on international guidelines for indoor noise. First, the level of noise generated in community facilities was estimated, and then the sound insulation performance was evaluated to determine whether the desired noise level was achieved.

  • PDF

Investigation of the sound insulation performance of walls and flanking noises in classrooms using field measurements (현장실험을 통한 학교교실의 벽체 차음성능 및 측로전달소음 조사)

  • Ryu, Da-Jung;Park, Chan-Jae;Haan, Chan-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.329-337
    • /
    • 2017
  • In USA and UK, the standards of both reverberation time and background noise level have been established for the appropriate aural environment in classrooms. In order to realize this, guidelines for architectural planning and interior finishing have been also suggested. However, in Korea, there has hardly been any guidelines for satisfying background noise criteria and investigation about sound insulation performance of current walls of classrooms. The present study investigates the structure of outer wall and walls between classrooms of two middle schools in order to analyze the sound insulation performance against both exterior and interior noises. Acoustic parameters including transmission loss, standardized sound level difference, and signal to noise ratio have been measured and analyzed for sound insulation performance of walls and flanking noises. As a result, concerning the walls in between classrooms, it was found that walls of dry construction have greater sound insulation performance rather than the walls of wet construction especially in mid and high frequency bands. Also, It was revealed that thermopane, insulated pair glass, of outer walls, has greater sound insulation performance than the double window consisted of two single pane glass. Regarding flanking noises, the standards were exceeded when all windows, or windows and doors front onto corridor were opened. It denotes that students could be disturbed with the sound transmission by the interior noises.

An Experimental Study to Improve Measurement Reliability for the Airborne Sound Insulation Performance by Laboratory Test (실험실 실험을 통한 벽체 차음성능 측정의 신뢰성 향상을 위한 실험적 연구)

  • Kim, Hang;Park, Hyeon Ku;Ku, Hee Mo;Kim, Sun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.35-44
    • /
    • 2014
  • Sound pressure levels in the receiving room while testing airborne sound insulation performance are varied by the measuring points. This may increase the measurement error, then decrease the measurement reliability. With this reason the research has carried out on the method to reduce deviations of sound pressure level in the ISO type rectangular laboratory focusing on the measurement of airborne sound insulation performance. Tests were made to see the effect of sound absorption in the receiving room, loudspeaker locations, microphones locations and flanking transmission path. Consequently, it was resulted that sound absorption in the receiving room and the loudspeaker location have influence on the sound level deviations especially in the low frequency. The microphone location was very important to get measurement reliability. The effective measuring point, which the sound level difference with average sound pressure level is within 2 dB, could yield most reliable average sound pressure level. Therefore it is necessary to find the effective measuring points in the receiving room. Flanking transmission path should be sealed using sound absorber or magnet etc. to prevent from lowering the sound insulation performance.

Evaluation of Sound Insulation Performance of a Unit Cabin Mock-up (유니트 캐빈 목업(mock-up)의 차음성능평가)

  • Kim, Hyun-Sil;Kim, Sang-Ryul;Kim, Bong-Ki;Kim, Jae-Seung;Lee, Sung-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Sound insulation performance of a unit cabin mock-up is studied, where two identical rooms simulating cruise ship cabin are installed. STL (Sound Transmission Loss) measurement in the mock-up shows that STL of the partition between rooms is degraded by imperfect door ceiling and gap between wall and floor. It is also observed that gap around lighting and electrical outlet slightly affect the STL in high frequency ranges, since lighting and electrical outlet are supported by mineral wool in the back side due to fire-resistance requirement. Even after all possible gaps are sealed, STL of the partition is found to be lower than that measured in the laboratory by 9 dB. Measurement of SBN (Structure-Borne Noise) reveals that flanking transmission of SBN along the steel deck floor can severely deteriorate STL of the partition. Statistical energy analysis (SEA) of the mock-up confirms importance of the floor SBN control, in which increasing damping is essential to ensure high STL.