• Title/Summary/Keyword: 측대역

Search Result 72, Processing Time 0.017 seconds

Evaluation of Installation Length of CWR Considering Rail Tenser's Capacity And Track Maintenance (레일긴장기의 성능을 고려한 효율적인 장대레일 설정방법)

  • Park, Ok-Jeong;Kim, Eung-Rok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.72-79
    • /
    • 2010
  • The significant of continuous welded rail (CWR) management is growing because KORAIL has the plan to convert the whole of conventional railway lines into CWRs through continuous activities since constructed the CWR track with 1.8km in Gyeongbu line in 1966. The CWR recently is needed a efficient management method because it is difficult to manage the CWR by the poor of technic and equipment, limited maintain labor force and shorted the maintain work time of CWR caused by industrialization, greenhouse effect and global warming In this point, The 70ton Tenser's which is using in the rail site has been analysised with no extra tenser's capacity in case of the under low temperature and exceed the length of 1km as a result of reviewing the CWR-related rules and standards, a series of records of safety accidents, operation obstacles, and the situation of broken rails published by KORAIL, existing rail temperature measurements, and CWR researches. Therefore avoid the excessive plan of the first set-up section, choice the proper time in the normal temperature that is possible to weld the rail, turning the difference of rail temperature and Installation temperature down is desirable.

  • PDF

An Integrated Operation/Evaluation System Development for Lane-Level Positioning Based on GNSS Networks (위성항법 기반 차로구분 정밀위치결정 인프라 운영/평가 시스템 개발)

  • Lee, Sangwoo;Im, Sunghyuk;Ahn, Jongsun;Son, Eunseong;Shin, Miri;Lee, Jung-Hoon;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.591-601
    • /
    • 2018
  • This paper discusses methods to effectively operates and evaluates an infrastructure system for lane-level positioning based on satellite navigation. The lane-level positioning infrastructure provides correction information on range measurements with integrity information on the correction to a user with a single frequency (cheap) satellite navigation receiver in order to perform lane-level positioning and integrity monitoring on the position estimate. The architecture and configuration of the lane-level positioning system are described from the systematic level in order to provide a comprehensive insight of the system. The operation/evaluation system for the integrated infrastructure is then presented. The evaluation results of the real implemented system are provided. Based on the results, we discuss requirements to increase the system stability from the operation perspective.