• Title/Summary/Keyword: 충전 시간

Search Result 752, Processing Time 0.024 seconds

Algorithm of Battery's Status Prediction using Electric Battery Sensor (Electric Battery Sensor를 이용한 Battery의 상태 예측 알고리즘 개발)

  • Nho, Hee-Jin;Lee, Se-Won;Ko, Kuk-Won
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.753-756
    • /
    • 2011
  • 지속적인 충/방전에 의하여 표준 수명 보다 더 빠른 노화 현상을 일으키는 배터리의 효율적인 관리를 위하여, 배터리의 내부 상태를 모니터링 하였다. 정확한 배터리 모니터링을 위해서 해당하는 배터리의 잔존 용량 및 잔존 수명을 정확히 예측할 수 있어야 하며, 이를 위해 Open Voltage를 사용한 실험, 에너지 보존 법칙에 의한 충전 전류 측정법, 시동 시 최대 전류와 내부 저항의 변화량을 알아내는 실험을 하였다. Open Voltage 실험 결과, SOC수치에 따른 특정 전압의 범위를 알 수 있었고, 이 전압은 온도에 의해 변동된다는 것을 확인할 수 있었다. 충전 그래프를 그려본 결과 충전횟수와 완충에 걸리는 시간은 반비례하며, 배터리 내부에 충전되는 총 전류의 양과도 관계가 있었다. 시동 실험에서는 최저 전압 드롭 값과 최대 공급 전류의 범위를 알 수 있었으며, 특정 SOC 구간 내 내부 저항의 값을 차이를 알 수 있었다. 이 값들은 각 SOC의 수치에 비례한 결과를 보였다. 이 결과들을 정리하여, 배터리 내부 상태를 예측하는 방법을 제안하고자 한다.

  • PDF

Effect of Ground Rubber on Mechanical Properties of EPDM Foam (EPDM 발포체의 가황거동 또 기계적물성에 미치는 분쇄고무의 영향)

  • Lim, J.C.;Lim, H.S.;Seo, K.H.
    • Elastomers and Composites
    • /
    • v.35 no.2
    • /
    • pp.132-137
    • /
    • 2000
  • The cure and physical properties of EPDM foam containing ground rubber and carbon black as filler were studied. The cure time reduced with the addition of filler. This result means reducing the operation time. In case of ground rubber was used, blowing ratio, tensile strength, and elongation were decreased rapidly at above 30 phr. On the other hand, in case of carbon black, they showed similar physical properties until 70 phr was used limited to 30 phr to make a good foam, which should be due to low interfacial interaction between EPDM and ground rubber. All the EPDM foams showed excellent thermal stability.

  • PDF

A Study on Transmission Efficiency of Wireless Power Induction and Resonant Charging Methodologies (무선 유도 및 공진 충전방식의 전송효율 연구)

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.747-750
    • /
    • 2019
  • Wearable devices have become practically indispensable to daily life and helped people track and manage fitness, health, and medical functions etc. As these wearable devices become smaller and more comfortable for the user, the demand for longer run time and charging ways presents new challenges for the power management engineer. Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smart phone to high power electric railroad and main electrical grid. There are two kinds of WPT methods: Inductive coupling and magnetic resonant coupling. The model using magnetic resonant coupling method is designed for a resonant frequency of 13.45 MHz. In this study, the hardware implementations of these two coupling methods are carried out, and the efficiencies are compared.

Effects of Shear Mixing on the Dispersion Improvement of Carbon Nanotube Fillers in Epoxy Composites (에폭시 복합재료의 강화에 사용된 탄소나노튜브의 분산 개선에 미친 전단혼합의 영향)

  • Ku, Min Ye;Lee, Gyo Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4385-4391
    • /
    • 2012
  • In this article, the effects of shear mixing on the dispersion improvement of the carbon nanotube fillers in epoxy composites were studied. Through the scanning electron microscope images showing the quantitative results and the tensile tests giving the qualitative data, we can see the dispersion improvement of the fillers. The composite specimen containing 0.6 wt% fillers shows the biggest value of tensile strength. For the tensile stiffness, the specimens containing more filler have the larger values of tensile stiffness.

Analysis of operating characteristics and design review of oxidizer fill-drain valve (산화제 충전/배출 밸브의 설계 검토 및 작동 특성 분석)

  • Jang, Je-Sun;Kwon, Oh-Sung;Lee, Kyung-Won;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.79-88
    • /
    • 2011
  • A fill-drain valve is operated by provided control gas at the ground for liquid propellant feeding system of space launch vehicle, which fills or drains on-board propellant tanks with a cryogenic oxidizer. We have analyzed and modified the data of fill-drain valve designed by Yuzhnoye. The simulation model of fill-drain valve is designed by using the AMESim code to predict and evaluate the dynamic characteristics and pneumatic behavior of valve. In this study, we performed a dynamic characteristic simulation on design parameter. And we could predict opening/closing time and pressures, operating performances on design parameters. This study will serve as one of reference guides to enhance the developmental efficiency of fill-drain valves with the various operating requirements, which shall be used in the Koreanized Space Launch Vehicle.

Novel System Modeling and Design by using Eclectic Vehicle Charging Infrastructure based on Data-centric Analysis (전기차 충전인프라 및 데이터 연계 분석에 의한 시스템 모델링 및 실증 설계)

  • Kim, Hangsub;Park, Homin;Jeong, Taikyeong;Lee, Woongjae
    • Journal of Internet Computing and Services
    • /
    • v.20 no.2
    • /
    • pp.51-59
    • /
    • 2019
  • In this paper, we analyzed the relationship between charging operation system and electricity charges connected with charging infrastructure among data of many demonstration projects focused on electric vehicles recently. At this point in time, due to the rapid increase in demand for the electric charging infrastructure that will take place in the future, we can prepare for an upcoming era in the sense of forecasting the demand value. At the same time, demonstrating and modeling optimized system modeling centering on sites is a prerequisite. The modeling based on the existing small - scale simulation and the design of the operating system are based on the data linkage analysis. In this paper, we implemented a new optimized system modeling and introduced it as a standard format to analyze time - dependent time - divisional data for each vehicle and user in each point and node. In order to verify the efficiency of the optimization based on the data linkage analysis for the actual implemented electric car charging infrastructure and operation system.

Design of a High-Performance Match-Line Sense Amplifier for Selective Match-Line charging Technique (선택적 매치라인 충전기법에 사용되는 고성능 매치라인 감지 증폭기 설계)

  • Ji-Hoon Choi;Jeong-Beom Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.769-776
    • /
    • 2023
  • In this paper, we designed an MLSA(Match-line Sense Amplifier) for low-power CAM(Content Addressable Memory). By using the MLSA and precharge controller, we reduced power consumption during CAM operation by employing a selective match-line charging technique to mitigate power consumption caused by mismatch. Additionally, we further reduced power consumption due to leakage current by terminating precharge early when a mismatch occurs during the search operation. The designed circuit exhibited superior performance compared to the existing circuits, with a reduction of 6.92% and 23.30% in power consumption and propagation delay time, respectively. Moreover, it demonstrated a significant decrease of 29.92% and 52.31% in product-delay-product (PDP) and energy-delay-product (EDP). The proposed circuit was validated using SPECTRE simulation with TSMC 65nm CMOS process.

Effectiveness of Electromagnetic Interference Shielding of Carbon Nanofiber/Poly(vinylidene fluoride) Composites as a Function of Beat Treatment Temperature and Time (열처리 온도와 시간에 따른 나노탄소섬유/PVDF 복합재의 전자파 차폐 특성)

  • 김명수;이방원;우원준;안광희
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.367-374
    • /
    • 2001
  • The electromagnetic interference (EMI) shielding effectiveness (SE) of poly(vinylidene fluoride) (PVDF) composites was investigated using carbon nanofiber fillers prepared by catalytic chemical vapor deposition of various carbon-containing gases over Ni and Ni-Cu catalysts. The electrical conductivity of carbon nanofiber which was regarded as the key property of filler for the application of EMI shielding ranged from 4.2 to 22.4 S/cm at a pressure of 10000 psi. The electrical conductivity of carbon nanofiber/PVDF composites ranged from 0.22 to 2.46 S/cm and the EMI SE of those was in the range of 2∼13 dB. The electrical conductivity of carbon nanofibers increased with the increase in heat treatment temperature and time, while the electrical conductivity of the composites increased rapidly at the initial heat treatment and then approached a certain value with the further increase of heat treatment. The SE of the composites showed a maximum at the medium heat treatment and was proportional to the electrical conductivity of the composites. It was concluded that the specific surface area of carbon nanofibers decreased with the continual heat treatment and the specific surface area of filler was an important factor for the SE of the composites.

  • PDF

Optimal Conditions for As(III) Removal by Filtration System Packed with Different Ratio of Iron-Coated Sand and Manganese-Coated Sand (철 및 망간코팅사 충전비를 달리한 여과시스템에서 3가 비소 제거의 최적 조건)

  • Chang, Yoon-Young;Kim, Kwang-Seob;Song, Ki-Hoon;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.11
    • /
    • pp.1186-1191
    • /
    • 2006
  • Removal efficiency of As(III) through oxidation and adsorption in column reactors was investigated at different ratios of manganese-coated sand(MCS) and iron-coated sand(ICS) : MCS-alone, ICS-alone and both of ICS and MCS. The breakthrough of arsenic immediately occurred from a column reactor with MCS-alone. However, most of the arsenic present in the effluent was identified as As(V) due to the oxidation of As(III) by MCS. While five-times delayed breakthrough of arsenic was observed from a column reactor with ICS-alone. At a complete breakthrough of arsenic, the removed As(III) was 36.1 mg with 1 kg ICS. To find an optimum ratio of ICS and MCS in the column packed with both ICS and MCS, the removal efficiency of As(III) was investigated at three different ratios of ICS/MCS with a fixed amount of ICS. The breakthrough time of arsenic was quite similar in the different ratios ICS/MCS. However, much slower breakthrough of arsenic was observed as the ratio of ICS/MCS decreased. As the ratio of ICS/MCS decreased the concentration of As(III) in the effluent decreased and then showed below 50 ppb at an equal amount of ICS and MCS, suggesting more efficient oxidation of As(III) by greater amount of MCS. When a complete breakthrough of arsenic occurred, the removed total arsenic with an equal amount of ICS and MCS was 68.5 mg with 1 kg of filter material.

Optimum Mix Proportion and Characteristics of the Combined Self Compacting Concrete according to Cement Types (시멘트 종류에 따른 병용계 자기충전 콘크리트의 최적배합비와 특성)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • This study is aimed to derive the optimum mix proportion of the combined self compacting concrete according to cement types (blast-furnace slag cement and belite cement) and to propose the basic data to field construction work after evaluating the quality properties. Specially, lime stone powder (LSP) as binder and viscosity agent are used in the combined self compacting concrete because slurry wall of an underground LNG storage tank should be kept stability of quality during concrete working. Replacement ratio of LSP is determined by confined water ratio test and main design factors including fine aggregate ratio ($S_r$), coarse aggregate ratio ($G_v$) and water-cement ratio (W/C) are selected. Also, quality properties including setting time, bleeding content, shortening depth and hydration heat on the optimum mix proportion of the combined self compacting concrete according to cement type are compared and analyzed. As test results, the optimum mix proportion of the combined self compacting concrete according to cement type is as followings. 1) Slag cement type-replacement ratio of LSP 13.5%, $S_r$ 47% and W/C 41%. 2) Belite cement type-replacement ratio of LSP 42.7%, Sr 43% and W/C 51%. But optimum coarse aggregate ratio is 53% regardless of cement types. Also, as test results regarding setting time, bleeding content, shortening depth and hydration heat of the combined self compacting concrete by cement type, belite cement type is most stable in the quality properties and is to apply the actual construction work.