• Title/Summary/Keyword: 충전 모델링

Search Result 129, Processing Time 0.033 seconds

Evaluation for Charging effects of Plug-in Electrical Vehicles in Power System considering Optimal Charging scenarios (전기자동차의 충전부하특성 모델링 및 충전 시나리오에 따른 계통평가)

  • Moon, Sang-Keun;Kim, Sung-Yul;Kin, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.298-299
    • /
    • 2011
  • The impacts of EV charging demands on power system such as increased peak demands may be developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes are proposed to determine optimal demand distribution portions so that charging costs and demands can be managed optimally. There are two optimization methods which have different effects on the outcome. These focus either on the Electric vehicle customer side (cost optimization) or the System Operator side (Load-weighted optimization).

  • PDF

Analysis of Harmonic Effects due to Charging of Electric vehicles (전기자동차 충전에 의한 고조파 영향 분석)

  • Kim, Ji-Hun;Sim, Hyeong-Wook;Ju, Seong-Chul;Lee, Jae-Won;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.79-80
    • /
    • 2011
  • 전기자동차 급속 충전기는 AC/DC 컨버터와 DC/DC 컨버터와 같은 전력변환장치, 차량과 충전기를 연결하는 충전인터페이스, 전력 공급설비, 차량과 충전기 상호 커뮤니케이션을 위한 통신망 등으로 구성된다. 따라서 전기자동차 급속 충전기의 전력변환장치로부터 전력계통으로 역류, 전력품질 및 전력기기 등에 악영향을 미치는 고조파가 발생되기 때문에 이에 대한 적절한 대책이 필요하다. 본 논문에서는 전기자동차 연계에 따른 전력 계통에서의 고조파 영향을 분석하기 위해 ATPDraw/MODESLS를 이용하여 급속 충전기의 전력변환장치인 AC/DC 컨버터와 DC/DC 컨버터를 모델링 하였고, 이를 한전 실 배전계통에 연계하여 차수별 고조파 및 THD(Total Harmonic Distortion)를 분석하였다.

  • PDF

Design of Bidirectional DC-DC converter for Lithium Battery Charging/Discharging Characteristics (리튬 배터리 충방전 특성을 고려한 양방향 DC/DC 컨버터 설계)

  • Im, Jae-Kwan;Lim, Deok-Young;Choi, Jae-Ho;Kwon, Kyoung-Min;Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.475-476
    • /
    • 2010
  • 본 논문은 에너지 저장장치로 각광받는 Li 배터리를 이용한 양방향 DC-DC컨버터의 구성 및 빠른 통특성을 갖는 이중 루프 PI제어기 설계를 제시하였다. 제어기는 초기 충전을 위한 정전류 제어기와 초기 충전 이후에 동작을 개시하는 전력제어기를 구성하였다. 배터리 모델링 및 양방향 DC-DC 컨버터용 제어기는 PSIM을 이용한 시뮬레이션을 통하여 검증하였으며, 그 타당성을 실험을 통하여 확인하였다.

  • PDF

Development of a Prediction Model for Formwork Pressure Exerted by Self-Compacting Concrete (자기충전 콘크리트의 거푸집 측압 예측 모델 개발)

  • Kwon, Seung-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.453-456
    • /
    • 2008
  • This study is underway to develop a prediction model for formwork pressure exerted by self-compacting concrete(SCC). Three major mechanisms related to formwork evolution over time were found, and mathematical modelling of each mechanism was made. A calculation method for real formwork pressure by using the mathematical formulae was also established. To verify predictive capability of the prediction model, a parametric study on parameters used in the model was performed. It was confirmed that the proposed model include the essential parameters that can simulate the real formwork pressure evolution over time.

  • PDF

Modeling & Operating Algorithm of Islanding Microgrid with Wind Turbine, Diesel Generator and BESS (풍력-디젤-BESS 독립형 마이크로그리드 모델링 및 운전제어 알고리즘에 관한 연구)

  • Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5893-5898
    • /
    • 2014
  • This paper proposes a modeling method and operating algorithm of an islanding microgrid that is composed of a Battery Energy Storage System (BESS), wind turbine and diesel generator applied in island areas. Initially, the bilateral AC/DC converter was designed for charge/discharge for frequency and voltage to be maintained within the proper ranges according to the load and weather change, and the operating method was proposed for a diesel generator to operate when power supply from the wind turbine or BESS is insufficient. The proposed modeling and controller design method of BESS was applied to a typical islanded microgrid with a wind turbine and diesel generator. The frequency and voltage was kept within the permissible ranges and the proposed method was proven to be appropriate through simulations.

Modeling of Hybrid Railway Vehicles with Hydrogen Fuel-Cell/Battery using a Rule-Based Algorithm (규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링)

  • Oh, Yoon-Gi;Han, Byeol;Oh, Yong-Kuk;Ryu, Joon-Hyoung;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.610-618
    • /
    • 2020
  • This paper presents the modeling of hybrid railway vehicles with hydrogen Fuel-Cells (FCs)/battery using a rule-based algorithm. The driving power of traction system is determined with the speed-torque curve by operation area of the electric machine and the electrical systems are modeled. The demanded power of electrical systems is set with the energy management system (EMS). The consumption of hydrogen is effectively managed with the subdivided operation region depending on the state of charge (SOC). The validity of the modeling is verified using MATLAB/Simulink.

A Comparative Study on the Effect of Tamping Materials on the Impact Efficiency at Blasting Work (발파작업 시 충전매질에 따른 발파효과 비교 연구)

  • Bae, Sang-Soo;Han, Woo-Jin;Jang, Seung-Yup;Bang, Myung-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.2
    • /
    • pp.57-65
    • /
    • 2022
  • This study simulated the shock wave propagation through the tamping material between explosives and hole wall at blasting works and verified the effect of tamping materials. The Arbitrary Lagrangian-Eulerian(ALE) method was selected to model the mixture of solid (Lagrangian) and fluid (Eulerian). The time series analysis was carried out during blasting process time. Explosives and tamping materials (air or water) were modeled with finite element mesh and the hole wall was assumed as a rigid body that can determine the propagation velocity and shock force hitting the hole wall from starting point (explosives). The numerical simulation results show that the propagation velocity and shock force in case of water were larger than those in case of air. In addition, the real site at blasting work was modeled and simulated. The rock was treated as elasto-plastic material. The results demonstrate that the instantaneous shock force was larger and the demolished block size was smaller in water than in air. On the contrary, the impact in the back side of explosives hole was smaller in water, because considerable amount of shock energy was used to demolish the rock, but the propagation of compression through solid becomes smaller due to the damping effect by rock demolition. Therefore, It can be proven that the water as the tamping media was more profitable than air.

Evaluation of Flexural Behavior of a Modular Pier with Circular CFT (충전원형강관을 이용한 모듈러 교각의 휨 거동 평가)

  • Ma, Hyang Wook;Oh, Hyun Chul;Kim, Dong Wook;Kong, Davon;Shim, Chang Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.6
    • /
    • pp.725-734
    • /
    • 2012
  • A new modular pier system using concrete filled circular steel tubes was suggested to realize modular bridge substructures for accelerated bridge construction. Structural details and connection details were proposed by connection multiple concrete filled tubes (CFT) for standardized products of fabrication, delivery and erection. Static tests were performed for the modular pier with suggested details under lateral load conditions for weak and strong axes. Due to the eccentricity by the bracing system, the modular pier showed 5.23 times higher flexural stiffness and 6 times greater flexural strength from the test. It is proper for the rational design to evaluate stress and deformation by frame modeling of the modular CFT pier. Structural capacity of the pier can be obtained by adjusting the spacing of the CFT columns. Design recommendations were derived from the test.

Calculation and Comparison of Liquid Oxygen Filling System between the KSLV-I Flight Test Data and the Modeling of the KSLV-II Launch Complex (한국형발사체 발사대시스템 산화제공급계 충전 운용 설계의 검증을 위한 나로호 비행시험 실증 자료 분석)

  • Seo, Mansu;Lee, Jae Jun;Hong, Ilgu;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.107-114
    • /
    • 2018
  • Korea Space Launch Vehicle (KSLV)-I flight test data and the modified 1-dimensional steady state modeling data from the critical design results of the KSLV-II liquid oxygen filling system operation are compared to validate the reliability of critical design modeling. A comparison of major flow rates and pressure values between test data and calculation results are conducted. The relative errors relative to maximum total flow rate for each cooling, filling, and replenishment mode are determined within 6.7%. Calculated pressure values at the outlet of the pump and the inlet of flow control valves are within 5.1%. The pressure at the inlet of the launch vehicle for each operation mode are within the measured pressure range.

Modeling and Simulation of Converter for fuel cell generation system (연료전지용 부스트 컨버터의 모델링 및 시뮬레이션)

  • Jang, Bokyoung;Kim, Taehun
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.283-284
    • /
    • 2011
  • 연료전지는 다른 대체에너지원에 비해 효율이 높고 소음이 거의 없으며 친환경적이라는 장점으로 인해 각광받고 있다. 연료전지는 수소와 산소의 전기화학반응으로 물이 생성되는데, 이때 전기와 열이 발생한다. 또한, 저전압 대전류의 특성을 가지며 부하에 따른 출력전압의 변동이 크므로 전압을 조정해야 한다. 따라서 저전압을 승압하기 위한 DC/DC Boost(이하 부스트)컨버터가 필요하다. 본 논문에서는 연료전지를 이용한 배터리 충전 시스템을 구성하고, 그 기능을 MATLAB/SIMULINK의 모델과 시뮬레이션을 통해 확인한다.

  • PDF