• Title/Summary/Keyword: 충전복극전해조

Search Result 3, Processing Time 0.016 seconds

Electrolytic Treatment of Ammonium Nitrogen and Nitrate Nitrogen by Bipolar Packed Bed Electrolytic Cell (충전복극전해조에 의한 암모니아성 및 질산성 질소의 전해처리)

  • Yun, Churl-Jong;Yu, Hyun-Chul;Kim, Jung-Sup;Lee, Bong-Seob;Kawk, Myoung-Hwa;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.686-689
    • /
    • 2005
  • This study was conducted to investigate the effect of ammonium and nitrate nitrogen removal to applied voltage, electrolytic time and activated carbon packing height. Batch bipolar packed bed electrolytic cell reactor was packed with $4{\times}8$ mesh granular activated carbon (GAC). Afterward electrolysis was performed in 20 V for 30 min. As a result, as the filling height adjusted to 80 mm high, the removal efficiency of ammonium nitrogen was 99.9%. and as the electrolytic time varied to 60 min, the removal efficiency of ammonium nitrogen was 97.6%. and in case of continuous electrolytic treatment of ammonium and nitrate nitrogen removal efficiency of total nitrogen was over 80% in bipolar packed bed electrolytic cell reactor for 72 hours as the packing height, sample concentration and input rate of sample adjusted to 280 mm, 30 mg/L, 6.7 mL/min, respectively.

Fluoride Removal by Granular Aluminium Bipolar Packed Bed Electrolytic Cell (입자상 알루미늄 충전복극전해조에 의한 불소제거)

  • Ha, Ji-Young;Park, Jung-Hoon;Woo, Sung-Hoon;Park, Seung-Cho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.684-688
    • /
    • 2007
  • The results of potentiostatic electrolysis of aqueous solution containing fluoride by bipolar packed bed electrolytic cell filled with granular aluminium were summarized. Removal efficiency of fluoride ion which it analyzed with ion chromatograph were 53, 73, 90% in applied voltage. Control the concentration of supporting electrolyte were 10, 30, 50, 70 mg/L and volume of packing material were 0, 25, 50, 75%, respectively, the quantity of electricity was $2.58A{\cdot}hr$ when the concentration of supporting electrolyte was 50 mg/L and the volume of packing material was 75%. As the results of electrolytsis of fluoride aqueous solution containing fluoride 10, 30, 50, 70 mg/L for 3 hours at 10 V, the removal efficiency of fluoride were 93.3, 80, 68.6%. Then the quantity of electricity were 2.58, 3.89, $5.43A{\cdot}hr$ and the fluoride removal amounts per quantity of electricity were 4.0, 3.5, $2.0mg/A{\cdot}hr$.

Removal of Total Phosphate by Bipolar Packed Bed Electrolytic Cell (충전복극전해조에 의한 총 인 제거)

  • Kim, Eun-Hee;Park, Seung-Cho
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.366-369
    • /
    • 2008
  • To evaluate the performance of a bipolar packed bed cell (BPBC) filled with granular aluminium, the experiments were carried out in two groups as batch and continuous processes. In a batch process, removal efficiency of total phosphate (T-P) was 88% in case of electrolytic treatment of phosphate solution, T-P 10 mg/L at 6 V during 3 h by BPBC filled with granular aluminium. In a continuous process, residual T-P concentration was about 2 mg/L in case of electrolytic treatment of phosphate solution, 10 mg/L at 6 V, HRT 3 h by BPBC filled with granular aluminium. Break-through point was observed after running for 120 h at hydraulic retention time (HRT) of 3 h.