• Title/Summary/Keyword: 충돌특성

Search Result 1,239, Processing Time 0.022 seconds

A Study on the Development of Test Rig for High Speed Frontal Crash and Test of Members ($\textrm{I}$) (고속충돌시험기 개발 및 부재의 충돌특성 실험에 관한 연구 (I))

  • 강신유;장인배;김헌영;정규진;박경환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.119-126
    • /
    • 2000
  • In this paper. a simple high-speed crash test rig for members of vehicle was developed for the improvement of crashworthiness of vehicle's side rail. The cart hanging the specimen is accelerated up to 35 mph by the force of freely dropping weight and 1:3 accelerating pulleys. The cart with shock absorbers travels on the rail roads, so it does not transfer any additional vibration to the specimen. To measure the test results, two types of accelerator are considered. the one is a strain gage type and the other is a piezo type. The test rig is rated good to test the specimen like a side rail of vehicle as developing the vehicle's structures in the early design stage.

  • PDF

Trends of airbag technology (에어백 기술의 발전동향)

  • 김권희
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.1-9
    • /
    • 1996
  • 에어백 관련기술은 차체 충돌특성 평가, 승객거동분석, 좌석벨트/조향축/에어백의 조화설계 등을 포함하는 시스템 엔지니어링 기술과 충돌감지센서, 가스발생기, 모듈 등을 포함하는 주요 기능 부품의 설계 및 제조기술로 구분된다. 이 중 시스템 엔지니어링 기술은 국내의 완성차 업계의 노력에 의하여 선진국의 수준에 근접하고 있으나 부품의 설계 및 제조기술은 매우 취약한 상황이다. 80년대 후반부터 각국의 에어백 관련 특허 출원 건수가 급증하고 있으며 새로운 기능의 부품들이 속속 개발되고 있다. 에어백 기술의 발전방향은 소형화, 경량화, 저렴화로 요약된다. 차량의 전방 충돌에 대비한 에어백이 주종을 이루고 있으나 측면 충돌에 대비한 side bag, 뒷자석 승객을 보호하기 위한 rear bag 등이 개발되고 있고 최근에는 버스 등 대형차량이나 모터사이클 등에도 에어백을 부착하기 위한 연구가 추진되고 있다. 에어백은 충돌센서(crash sensor), 가스발생장치(inflator), 공기주머니(bag), 덮개(cover), 배선(wire harness) 등으로 구성된다. 이들 중에서 공기주머니, 덮개, 가스발생장치를 결합한 부분 조립품을 모듈(module)이라고 부르고 있다. 이하에서는 에어백을 구성하는 주요 기능부품들의 종류, 특성과 기술개발 동향을 알아보기로 한다.

  • PDF

An Analysis on Ultra High Pressure Impinging Diesel Spray Characteristics with Impinging Distance and Impinging Angle (극초고압 디젤충돌분무의 충돌거리 및 충돌각에 대한 분무특성 해석)

  • Jeong, D.Y.;Kim, H.J.;Chung, C.M.;Lee, J.T.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2003
  • To find suitable injection pressure, ultra high pressure impinging spray characteristics were investigated with a impinging distance and a impinging angle by using high pressure injection system. As impinging distance was increased, spray penetration was decreased but spray height was increased. For increase of injection pressure, spray penetration and spray height were increased until 2,500bar. But over this injection pressure region, the rate of increase was decreased suddenly.

  • PDF

A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites (하니컴 샌드위치 복합재를 적용한 저상버스의 충돌 및 전복 특성 연구)

  • Shin, Kwang-Bok;Ko, Hee-Young;Cho, Se-Hyun
    • Composites Research
    • /
    • v.21 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • This paper presents the evaluation of crashworthiness and rollover characteristics of low-floor bus vehicles made of aluminum honeycomb sandwich composites with glass-fabric epoxy laminate facesheets. Crashworthiness and rollover analysis of low-floor bus was carried out using explicit finite element analysis code LS-DYNA3D with the lapse of time. Material testing was conducted to determine the input parameters for the composite laminate facesheet model, and the effective equivalent damage model for the orthotropic honeycomb core material. The crash conditions of low-floor bus were frontal accident with speed of 60km/h. Rollover analysis were conducted according to the safety rules of European standard (ECE-R66). The results showed that the survival space for driver and passengers was secured against frontal crashworthiness and rollover of low-floor bus. Also, The modified Chang-Chang failure criterion is recommended to predict the failure mode of composite structures for crashworthiness and rollover analysis.

Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용)

  • Jang, Ji Yong;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.106-118
    • /
    • 2014
  • The objective of this study is to develop a methodology for evaluating the effectiveness of in-vehicle pedestrian warning systems. Driving Simulator-based experiments were conducted to collect data to represent driver's responsive behavior. The braking frequency, lane change duration, and collision speed were used as measure of effectiveness (MOE) to evaluate the effectiveness. Collision speed data obtained from the simulation experiments were further used to predict pedestrian injury severity. Results demonstrated the effectiveness of warning information systems by reducing the pedestrian injury severity. It is expected that the proposed evaluation methodology and outcomes will be useful in developing various vehicular technologies and relevant policies to enhance pedestrian safety.

Nonlinear Crash Analyses and Comparison with Experimental Data for the Skid Landing Gear of a Helicopter (헬리콥터 강착장치 비선형 충돌해석 및 실험결과 비교)

  • 이상민;김동현;정세운
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.87-94
    • /
    • 2006
  • In this study, nonlinear crash analyses have been conducted for the skid landing gear of a helicopter. The realistic landing gear model of the commercial helicopter (SB427) is considered. Three-dimensional dynamic finite element model with variable thickness and material plastic behavior is constructed and LS-DYNA(Ver.970) is used to conduct nonlinear transient crash analyses for different impact conditions. Characteristics of nonlinear transient responses due to the ground crash are investigated for typical structural design criteria of a skid landing gear system. In addition, comparison results for maximum crash deformations of the skid landing gear are presented and the important effect of ground friction for numerical accuracy is described.

Crashworthy behaviour of cellular polymer under constant impact energy (동일 충격 에너지 조건하에서 다공질 고분자의 충격거동에 관한 연구)

  • Jeong, Kwang-Young;Cheon, Seong-Sik
    • Composites Research
    • /
    • v.22 no.4
    • /
    • pp.27-32
    • /
    • 2009
  • Characterisation of the stress-strain relationship as well as crashworthiness of cellular polymer was investigated under constant impact energy with different velocities, considering inertia and strain rate effects simultaneously during the impact testing. Quasi-static and impact tests were carried out for two different density (64 $kg/m^3$, 89 $kg/m^3$) cellular polymer specimens. Also, the equations, coupled with the Sherwood-Frost model and the Impulse-Momentum theory, were employed to build the constitutive relation of the cellular polymer. The nominal stress-strain curves obtained from the constitutive relation were compared with results from impact tests and showed to be in good agreement.

선박운항자 의식 기반 충돌회피 알고리즘 개발에 관한 연구

  • Park, Min-Jeong;Park, Yeong-Su;Gong, In-Yeong;Lee, Eun-Gyu;Kim, Jong-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.85-86
    • /
    • 2020
  • 자율운항선박을 위한 충돌회피 알고리즘은 여러 연구자들을 통해 다양한 방식으로 개발되고 있다. 본 연구에서는 한국 연안 지역 특성 및 선박운항자의 의식을 기반으로 한 해상교통위험도 평가 모델인 PARK Model을 적용하여 충돌회피 알고리즘을 개발하였다. 이렇게 개발된 충돌회피 알고리즘은 자율운항선박과 사람이 동시에 항해하는 과도기에 선박운항자의 의식을 반영한 충돌회피를 수행하여 다른 선박운항자들에게 이질감 및 부담감을 주지않을 것으로 사료된다. 본 연구의 충돌회피 알고리즘은 PARK Model 위험도를 기반으로 COLREGS 규정을 반영하여 회피동작을 수행하며, 여러 규모의 선박을 대상으로 마주치는 상황, 횡단하는 상황, 추월하는 상황과 이들이 복합적으로 발생하는 상황에 대한 시뮬레이션 결과 모두 충돌을 회피할 수 있었다. 또한, 과거 AIS Data를 이용한 실해역 시뮬레이션 실험에서도 충돌회피를 수행하여 본 충돌회피 알고리즘의 성능을 검증하였다.

  • PDF

Equivalent Modeling Technique for 1-D Collision Dynamics Using 3-D Finite Element Analysis of Rollingstock (열차의 3차원 유한요소해석을 이용한 1차원충돌 동역학 등가 모델링 기법)

  • Park, Min-Young;Park, Young-Il;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this study, a new equivalent modeling technique of rollingstock for 1-D collision dynamics was proposed using crash analysis of 3-D finite element model in some detail. To obtain good simulation results of 1-D dynamic model, the force-deformation curves of crushable structures should be well modelled with crash analysis of 3-D finite element model. Up to now, the force-deformation curves of the crushable structures have been extracted from crash analyses of sectionally partitioned parts of the carbody, and integrated into 1-D dynamic model. However, the results of the 1-D model were not satisfactory in terms of crash accelerations. To improve this problem, the force-deformation curves of the crushable structures were extracted from collision analysis of a simplified train consist in this study. A comparative study applying the suggested technique shows in good agreements in simulation results between two models for KHST.

A Study on the Influence of the Navigator's Personal Characteristics on the Perceived Collision Risk in Close-quarter Situations (선박 근접상황에서 항해사의 인적특성요인이 지각한 충돌위험도에 미치는 영향에 관한 연구)

  • Kim, Do-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.644-655
    • /
    • 2020
  • This study focuses on the margin of human error when a navigator is embarrassed by the psychological fear of collision in a close-quarter situation (CQS) and is unable to perform as per the prescribed collision avoidance measures. The purpose of the study is to identify the effects of the navigator's personal characteristics or factors in relation to on-board career (OC), license rating (LR), and age on the perceived collision risk (PCR) in CQSs. In order to obtain quantified data regarding the collision risk perceived by the navigator in four typical CQSs between their own ship and a target ship, this study measured and collated the heart rate variability of 30 navigators on their own ship when two ships approached each other at a speed of 10 knots from 2.5 nautical miles to a collision situation. According to a multiple regression analysis of the measured values, the navigators' OC and LR factors had negative effects on the PCR, while the age factor had no significant effect on PCR. The t-test results showed that the PCR value was significantly higher for navigators with an OC ≤ 4 years than for those with an OC ≥ 5 years, and the LR factor was significantly higher for a class 4~6 group than for a class 2~3. This finding may be applied to the development of collision risk warning systems, particularly for navigators.