• Title/Summary/Keyword: 충돌에너지흡수

Search Result 106, Processing Time 0.018 seconds

Material Tests for Module Type Crash Cushion (모듈타입 충격흡수장치를 위한 재료실험)

  • Ko, Man-Gi;Kim, Kee-Dong;Sung, Jung-Gon;Kim, Jin-Man
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.87-95
    • /
    • 2008
  • One way to shield an atypical structure to secure the occupant safety of an impact vehicle is to stack energy absorbing material modules around the structure. To be applicable to a cushion module, material must have enough energy absorbing capabilities while satisfying the safety requirements of the vehicle occupant. Static compression test of the potential materials gives a good indication which material is good for a slacking module. This paper presents the mechanical properties that a cushion material must have to satisfy the safety requirements. Static tests are performed for Quard-Guard system module, sand bag, recycled tires, Geo-Container, Geo-Cell and Expanded Polystyren (EPS) Blocks. Static test results are discussed and EPS block of $30kg/m^{3}$ density showed good potential for a cushion module. To check the dynamic effect of EPS block, drop tests have been made up to 35.6km/h impact speed. Drop test results are compared with static test results and no appreciable difference was found. To improve the EPS module property, making holes to the block is suggested and drop test are performed for the modified blocks. From the drop test results, design values are suggested.

  • PDF

Analysis on the Crashworthiness of the Full Rake Korean Electric Multiple Unit Train (한국형 표준전동차 전체차량의 충돌안전도 해석 연구)

  • 구정서;김동성;조현직;권태수;최성규
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.1
    • /
    • pp.27-33
    • /
    • 2000
  • In this paper, numerically evaluated is the crashworthiness of the new design of the standard Korea Electric Multiple Unit Train(K-EMU)[developed by the Korea Railway Research Institute]. The 4-car consist of K-EMU is analyzed under collision conditions such as normal coupling, heavy shunting, light collision and heavy collision to collide against another stationary one at 5 kph, 10 kph, 25 kph and 32 kph, respectively. Energy absorbing capacity of its draftgear commercially available in the market and to be equipped in K-EMU is evaluated under each collision condition. Analytical results show that draftgear only is not enough to provide necessary energy absorbing capacity. It is therefore concluded that additional energy absorbers like mechanical fuses should be adopted to improve the crashworthiness of K-EMU.

  • PDF

A Study on the Optimum Design of the Automotive Side Member to Maximize the Crash Energy Absorption Efficiency (충돌에너지 흡수효율 최대화를 위한 자동차 사이드 멤버 최적 설계에 관한 연구)

  • Lee, Jung Hwan;Jeong, Nak Tak;Suh, Myung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.11
    • /
    • pp.1179-1185
    • /
    • 2013
  • In this study, the design optimization of the automotive side member is performed to maximize the crash energy absorption efficiency per unit weight. Design parameters which seriously influence on the frontal crash performance are selected through the sensitivity analysis using the Plackett-Burman design method. And also the design variables, which are determined from the sensitivity analysis, are optimized by two methods. One is conventional approximate optimization method which uses the statistical design of experiments (DOE) and response surface method (RSM). The other is a methodology derived from previous work by the authors, which is called sequential design of experiments (SDOE), to reduce a trial and error procedure and to find an appropriate condition for using micro-genetic algorithm. The proposed optimization technique shows that the automotive side member structure can be designed considering the frontal crash performance.

Analysis Method of Module Type Crash Cushion (모듈형태의 충격흡수장치 해석방법)

  • Ko, Man-Gi;Kim, Kee-Dong;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.97-104
    • /
    • 2008
  • Many atypical structures on the roadside are exposed to traffics unshielded posing great danger. One way to shield an atypical structure to secure the occupant safety is to stack energy absorbing material modules in front of the structure. This paper presents the analysis method of module type crash cushion made of EPS blocks using simple energy balance of the car and crash cushion and numerical examples for 0.9ton-500km/h, 0.9ton-60km/h and 0.9ton-70km/h impact are presented. This method gives simple estimation of maximum acceleration, time of crash, whether or not the vehicle stops completely before whole cushion is being crushed. However, since the acceleration and velocity data from the analysis is so crudely spaced that calculation of safety indices such is RA and OIV is not possible. Problem is overcome by using data interpolation. The spline and linear interpolation is introduce and safety analysis is made and the results are compared.

  • PDF

The Assessment of Structural Crashworthiness in Collision Using Double Skinned Structural Model (이중 선체 선박의 충돌 강도 해석)

  • 이경언;원석희;백점기;이제명;김철홍
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.71-76
    • /
    • 2004
  • To deal with ship collision or grounding, double hull structure has been applied to ships carrying dangerous cargoes. Studies about ability of double hull structure to absorb collision energy and determining fracture state are still under researching. In this study, commercial analysis code, LS-DYNA3D, is used to analyze collision strength of ships in various scenarios. 46K Chemical/Product Carrier is used as analysis subject ship. Study about Energy-Indentation and Force-Indentation is conducted under conditions that weight and collision velocity are changed. Results of this study are very helpful to make mechanism of collision accident clear and to supply useful information about collision strength criteria.

  • PDF

Experimental and Numerical Studies on Composite Tubes for the Energy Absorber of High-speed Train (복합재 튜브를 이용한 고속 열차의 에너지 흡수장치에 대한 실험 및 수치해석 연구)

  • Nguyen, Cao-Son;Jang, Hong-Kyu;Shin, Jae-Hwan;Son, Yu-Na;Kim, Chun-Gon
    • Composites Research
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2011
  • This paper presents an experimental and numerical study on composite tubes for the energy absorber of the high-speed train. The purpose of the experimental study is to find out which lay-up is the best lay-up for the energy absorber. Four lay-ups were tested using quasi static method: $[0/45/90/-45]_4$, $[0]_{16}$, $[0/90]_8$, $[0/30/-30]_5$. Two triggering methods were used to create initial damage and guarantee the progressive collapse mode: bevel edge and notch edge. As a result, $[0/45/90/-45]_4$ lay-up was find out the best lay-up among the laminates being tested. In the numerical study, a parametric analysis was done to find out the most proper way to simulate the quasi static test of a composite tube using LS-DYNA program. A single composite tube was modeled to be crashed by a moving wall. Comparison between simulation and experiment was done. Reasonable agreement between experiment and analysis was obtained. Dealing with parameter TFAIL and the mass scaling factor, this parametric study shows the ability and the limitation of LS-DYNA in modeling the quasi static test for the composite tube.

A Study on the Side Impact Characteristics Occurred from SUV-to-Passenger Car using LS-DYNA (LS-DYNA를 이용한 SUV와 승용차의 측면충돌 특성에 대한 연구)

  • Lim, Jong-Han
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.2
    • /
    • pp.217-226
    • /
    • 2018
  • Since the sides of a vehicle are designed asymmetrically unlike its front or rear, the degree of deformation of the car body greatly differs depending on the site of collision if a broadside collision takes place. When elastic deformation and plastic deformation occur in the car body occur due to a collision, the kinetic energy is absorbed into the body, and the momentum decreases. Generally, an analysis of traffic accidents analyzes the vehicle's behavior after a collision by the law of momentum conservation and corrects the error of the amount of energy absorption due to the deformation of the car body, applying a restitution coefficient. This study interpreted a finite element vehicle model applying the structure of the car body and the material properties of each part with LS-DYNA, analyzed the result and drew the restitution coefficient and the depth of penetration according to the contact area of the vehicle in a broadside collision between an SUV and a passenger car. When the finally calculated restitution coefficient and depth of penetration were applied to the examples of the actual traffic accidents, there was an effect on the improvement of the error in the result. It was found that when the initial input value, drawn using the finite element analysis model, it had a higher reliability of the interpretation than that of the existing analysis techniques.

Hypervelocity Impact Analysis Of Composite Plate For Space Shielding System (우주용 쉴딩 시스템에 적용할 복합재료 평판의 초고속 충돌 해석)

  • Son, Yu-Na;Moon, Jin-Bum;Lim, Gun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.14-18
    • /
    • 2010
  • Among the factors that threaten spacecraft, Micrometeoroid and Orbital Space Debris(MMOD) cause damage to spacecraft and impact velocity is about 8~70km/s. Nowadays, various Whipple Shield are studied and applied to protect spacecraft. As the materials used to Shielding System, aluminum is usually used but composite is also used increasingly. So this study compared characteristics of hypervelocity impact of Aluminum and composites through finite element analysis. The Projectile was a spherical shape using Aluminum 2017-T4, and aluminum plate was using Aluminum 6061-T6, CFRP plate was using T300/5208. Initial impact velocity of projectile was 1km/s. As a result, kinematic energy of projectile decreased to about 64J and about 63J for aluminum plate and CFRP plate, respectively after impact. Although both results is almost same about the absorption of impact energy, you can think the CFRP has good ballistic characteristic, because CFRP is lighter about 1.7 times compared with density of aluminum.

Crashworthiness Design Concepts for the Improved Energy Absorbing Performance of an Aluminum Lightweight Vehicle Body (알루미늄 경량 차체의 충돌에너지 흡수 성능 향상을 위한 설계 개선 연구)

  • 김범진;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.155-160
    • /
    • 2003
  • For the weight reduction of vehicle body up to 20∼30% compared to the conventional monocoque steel body·.in-white, most automotive manufacturers have attempted to develop the aluminum intensive body-in-white using an aluminum space frame. In this paper, the crush tests and simulations for the aluminum extrusions filled with the structural from are performed to evaluate the collapse characteristics of that light weighted material. From these studies. the effectiveness of structural for is evaluated in improving automotive crashworthiness. In order to improve the improve energy absorption capability of the aluminum space frame body, safety design modifications are performed and analyzed based on the suggested collapse initiator concepts and on the application of the aluminum extrusions filled with structural foam. The effectiveness of these design concepts on the frontal and side impact characteristics of the aluminum intensive vehicle structure is investigated and summarized.

An Evaluation of Crashworthiness for the Full Rake KHST Using 1-D Dynamic Model (1차원 동역학 모델을 이용한 한국형 고속전철의 충돌 안전도 평가)

  • 구정서;조현직;김동성;윤영한
    • Journal of the Korean Society for Railway
    • /
    • v.4 no.3
    • /
    • pp.94-101
    • /
    • 2001
  • One of the best methods to evaluate crashworthiness of a full rake trainset is to analyse 1-dimensional dynamic model using dampers, nonlinear springs and bars, and masses. In this study, the crashworthiness of KHST has been evaluated by analysing a nonlinear dynamic model made up of springs/bars-dampers-masses. The numerical results show that the KHST can absorb more kinetic energy at lower impact forces and lower accelerations in case of heavy collisions, if compared with KTX. Also, the KHST can be protected from any damage in its car-body and electric components except the energy absorbing tube in case of light collisions, like train-to-train accidents at speed under 8 kph. On the other hand, the KTX may be more damaged in the light collisions because there is no energy absorbing tube.

  • PDF