• Title/Summary/Keyword: 충돌시뮬레이션

Search Result 800, Processing Time 0.031 seconds

Fuzzy Control for the Obstacle Avoidance of Remote Control Mobile Robot (원격제어 이동로봇의 장애물 회피를 위한 퍼지 제어)

  • Yeo, Hee-Joo;Sung, Mun-Hyun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.1
    • /
    • pp.47-54
    • /
    • 2011
  • The remote control mobile robot is the robot accomplishing a task according to the orders giving by a user through departed communication system using a joystick. Basically, to supply a lot of information, as this type of robot uses visual information, the user can check the transmitted information by eyes and give orders to the robot. But the weak point of this type of robot is that it has a possibility to come into a collision with an obstacle not be seen to the user because of the communication delay occurring in a communication system and dead zone happening in visual information. To solve the problem, in this paper, we try to suggest a system applying a fuzzy control system to the robot to avoid collision with an obstacle by an immediate order of the user. The fuzzy control system has better performance than any other existing control methods in the change of noise and parameter. And it is more efficient than any other since it solves easy the complexity of the system analysis occurring because of the nonlinear feature of the mobile robot system. In this paper, we made experiments how the mobile robot controlled by the fuzzy control system avoids an obstacle, tracks the path and avoids the obstacle in the path, to prove the performance and to check the evaluation and the application possibility of the fuzzy control system.

Advanced Victim Cache with Processor Reuse Information (프로세서의 재사용 정보를 이용하는 개선된 고성능 희생 캐쉬)

  • Kwak Jong Wook;Lee Hyunbae;Jhang Seong Tae;Jhon Chu Shik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.12
    • /
    • pp.704-715
    • /
    • 2004
  • Recently, a single or multi processor system uses the hierarchical memory structure to reduce the time gap between processor clock rate and memory access time. A cache memory system includes especially two or three levels of caches to reduce this time gap. Moreover, one of the most important things In the hierarchical memory system is the hit rate in level 1 cache, because level 1 cache interfaces directly with the processor. Therefore, the high hit rate in level 1 cache is critical for system performance. A victim cache, another high level cache, is also important to assist level 1 cache by reducing the conflict miss in high level cache. In this paper, we propose the advanced high level cache management scheme based on the processor reuse information. This technique is a kind of cache replacement policy which uses the frequency of processor's memory accesses and makes the higher frequency address of the cache location reside longer in cache than the lower one. With this scheme, we simulate our policy using Augmint, the event-driven simulator, and analyze the simulation results. The simulation results show that the modified processor reuse information scheme(LIVMR) outperforms the level 1 with the simple victim cache(LIV), 6.7% in maximum and 0.5% in average, and performance benefits become larger as the number of processors increases.

Data Cache System based on the Selective Bank Algorithm for Embedded System (내장형 시스템을 위한 선택적 뱅크 알고리즘을 이용한 데이터 캐쉬 시스템)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.16A no.2
    • /
    • pp.69-78
    • /
    • 2009
  • One of the most effective way to improve cache performance is to exploit both temporal and spatial locality given by any program executive characteristics. In this paper we present a high performance and low power cache structure with a bank selection mechanism that enhances exploitation of spatial and temporal locality. The proposed cache system consists of two parts, i.e., a main direct-mapped cache with a small block size and a fully associative buffer with a large block size as a multiple of the small block size. Especially, the main direct-mapped cache is constructed as two banks for low power consumption and stores a small block which is selected from fully associative buffer by the proposed bank selection algorithm. By using the bank selection algorithm and three state bits, We selectively extend the lifetime of those small blocks with high temporal locality by storing them in the main direct-mapped caches. This approach effectively reduces conflict misses and cache pollution at the same time. According to the simulation results, the average miss ratio, compared with the Victim and STAS caches with the same size, is improved by about 23% and 32% for Mibench applications respectively. The average memory access time is reduced by about 14% and 18% compared with the he victim and STAS caches respectively. It is also shown that energy consumption of the proposed cache is around 10% lower than other cache systems that we examine.

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.

Securing Safety in Collaborative Cyber-Physical Systems Through Fault Criticality Analysis (협업 사이버물리시스템의 결함 치명도 분석을 통한 안전성 확보)

  • Hussain, Manzoor;Ali, Nazakat;Hong, Jang-Eui
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.287-300
    • /
    • 2021
  • Collaborative Cyber-Physical Systems (CCPS) are those systems that contain tightly coupled physical and cyber components, massively interconnected subsystems, and collaborate to achieve a common goal. The safety of a single Cyber-Physical System (CPS) can be achieved by following the safety standards such as ISO 26262 and IEC 61508 or by applying hazard analysis techniques. However, due to the complex, highly interconnected, heterogeneous, and collaborative nature of CCPS, a fault in one CPS's components can trigger many other faults in other collaborating CPSs. Therefore, a safety assurance technique based on fault criticality analysis would require to ensure safety in CCPS. This paper presents a Fault Criticality Matrix (FCM) implemented in our tool called CPSTracer, which contains several data such as identified fault, fault criticality, safety guard, etc. The proposed FCM is based on composite hazard analysis and content-based relationships among the hazard analysis artifacts, and ensures that the safety guard controls the identified faults at design time; thus, we can effectively manage and control the fault at the design phase to ensure the safe development of CPSs. To justify our approach, we introduce a case study on the Platooning system (a collaborative CPS). We perform the criticality analysis of the Platooning system using FCM in our developed tool. After the detailed fault criticality analysis, we investigate the results to check the appropriateness and effectiveness with two research questions. Also, by performing simulation for the Platooning, we showed that the rate of collision of the Platooning system without using FCM was quite high as compared to the rate of collisions of the system after analyzing the fault criticality using FCM.

Investigation of Effects of Lightning and Icing on an e-VTOL UAM Aircraft and a Proposal for Certification Guidance (e-VTOL UAM 항공기의 낙뢰 및 결빙 영향성 분석 및 인증기술에 관한 연구)

  • Kim, Yun-Gon;Jo, Hyeonseung;Jo, Jae-Hyeon;Park, Se-Woong;Myong, Rho-Shin
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.45-56
    • /
    • 2021
  • Demand for UAM (Urban Air Mobility) aircraft is rapidly increasing in countries around the world due to the problem of traffic congestion in urban areas. Through research and development, various e-VTOL aircraft concepts are being prepared for commercialization, for which airworthiness certification is required, since it is a manned transportation mode for people to board. Factors that pose a fatal threat to the safe operation of UAM aircraft include lightning strikes that can cause damage to structures and disturb the navigation system, as well as icing that impairs flight stability. Since the current UAM aircraft-related lightning and icing certification technology development is insufficient, there is need to develop appropriate airworthiness certification guidelines. In this study, after analyzing the laws and regulations related to aircraft by the FAA and the EASA, we tried to incorporate the lightning and icing certification guidelines for the UAM aircraft. We also analyzed the effects of lightning and icing on UAM aircraft using computational simulation, and presented the basis for establishing practical guidelines for the certification of UAM aircraft to be adopted in the future.

A Multi-Dimensional Node Pairing Scheme for NOMA in Underwater Acoustic Sensor Networks (수중 음향 센서 네트워크에서 비직교 다중 접속을 위한 다차원 노드 페어링 기법)

  • Cheon, Jinyong;Cho, Ho-Shin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.6
    • /
    • pp.1-10
    • /
    • 2021
  • The interest in underwater acoustic sensor networks (UWASNs), along with the rapid development of underwater industries, has increased. To operate UWASNs efficiently, it is important to adopt well-designed medium access control (MAC) protocols that prevent collisions and allow the sharing of resources between nodes efficiently. On the other hand, underwater channels suffer from a narrow bandwidth, long propagation delay, and low data rate, so existing terrestrial node pairing schemes for non orthogonal multiple access (NOMA) cannot be applied directly to underwater environments. Therefore, a multi-dimensional node pairing scheme is proposed to consider the unique underwater channel in UWASNs. Conventional NOMA schemes have considered the channel quality only in node pairing. Unlike previous schemes, the proposed scheme considers the channel gain and many other features, such as node fairness, traffic load, and the age of data packets to find the best node-pair. In addition, the sender employs a list of candidates for node-pairs rather than path loss to reduce the computational complexity. The simulation results showed that the proposed scheme outperforms the conventional scheme by considering the fairness factor with 23.8% increases in throughput, 28% decreases in latency, and 5.7% improvements in fairness at best.

Numerical Study on Impact Resistance of Nonuniform Nacre-patterned Multi-layer Structures (비균일 진주층 모사 다층형 복합재료의 내충격성에 관한 수치해석)

  • Lee, Tae Hee;Ko, Kwonhwan;Hong, Jung-Wuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.4
    • /
    • pp.215-226
    • /
    • 2022
  • Significant efforts have been devoted to developing high-performance composite materials by emulating the structure of biological creatures with superior mechanical characteristics. Nacre has been one of the most sought-after natural structures due to its exceptional fracture toughness compared with the constituent materials. However, the effect of manipulating the nacre-like geometry on the impact performance has not been fully investigated thus far. In this study, composites of randomly manipulated nacreous geometry are numerically developed and the impact performance is analyzed. We develop an algorithm by which the planar area of platelets in the nacre-like design is randomly resized. Thereafter, the numerical models of nonuniform nacre-patterned multi-layer structures are developed and the drop-weight impact simulation is performed. The impact behaviors of the model are evaluated by using the ratio of absorbed energy, the von Mises stress distribution, and the impact force-time curve. Therefore, the effect of the geometric irregularity on the nacre-patterned design is elucidated. This insight can be efficiently utilized in establishing the optimum design of the nacre-patterned structure.

A Study on the Safety Improvement of Vessel Traffic in the Busan New Port Entrance (부산신항 진출입 항로 내 선박 통항 안전성 향상에 관한 연구)

  • Choi, Bong-kwon;Park, Young-soo;Kim, Nieun;Kim, Sora;Park, Hyungoo;Shin, Dongsu
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.321-330
    • /
    • 2022
  • Busan New Port manages the largest volume of traffic among Korean ports, and accounts for 68.5% of the total volume of the Busan port. Due to this increase in volume, ultra large container ships call at Busan New Port. When the additional south container terminal as well as ongoing construction project of the west container terminal are completed, various encounters may occur at the Busan New Port entrance, which may cause collision risk.s Thus, the purpose of this study was to provide a plan to improve the safety of vessel traffic, in the in/out bound fairway of Busan New Port. For this purpose, the status of arrivals and departures of vessels in Busan New Port, was examined through maritime traffic flow analysis. Additionally, risk factors and safety measures were identified, by AHP analysis with ship operators of the study area. Also, based on the derived safety measures, scenarios were set using the Environmental Stress model (ES model), and the traffic risk level of each safety measure was identified through simulation. As a result, it is expected that setting the no entry area for one-way traffic would have a significant effect on mitigating risks at the Busan New Port entrance. This study can serve as a basis for preparing safety measures, to improve the navigation of vessels using Busan New Port. If safety measures are prepared in the future, it is necessary to verify the safety by using the traffic volume and flow changes according to the newly-opened berths.

SANET-CC : Zone IP Allocation Protocol for Offshore Networks (SANET-CC : 해상 네트워크를 위한 구역 IP 할당 프로토콜)

  • Bae, Kyoung Yul;Cho, Moon Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.87-109
    • /
    • 2020
  • Currently, thanks to the major stride made in developing wired and wireless communication technology, a variety of IT services are available on land. This trend is leading to an increasing demand for IT services to vessels on the water as well. And it is expected that the request for various IT services such as two-way digital data transmission, Web, APP, etc. is on the rise to the extent that they are available on land. However, while a high-speed information communication network is easily accessible on land because it is based upon a fixed infrastructure like an AP and a base station, it is not the case on the water. As a result, a radio communication network-based voice communication service is usually used at sea. To solve this problem, an additional frequency for digital data exchange was allocated, and a ship ad-hoc network (SANET) was proposed that can be utilized by using this frequency. Instead of satellite communication that costs a lot in installation and usage, SANET was developed to provide various IT services to ships based on IP in the sea. Connectivity between land base stations and ships is important in the SANET. To have this connection, a ship must be a member of the network with its IP address assigned. This paper proposes a SANET-CC protocol that allows ships to be assigned their own IP address. SANET-CC propagates several non-overlapping IP addresses through the entire network from land base stations to ships in the form of the tree. Ships allocate their own IP addresses through the exchange of simple requests and response messages with land base stations or M-ships that can allocate IP addresses. Therefore, SANET-CC can eliminate the IP collision prevention (Duplicate Address Detection) process and the process of network separation or integration caused by the movement of the ship. Various simulations were performed to verify the applicability of this protocol to SANET. The outcome of such simulations shows us the following. First, using SANET-CC, about 91% of the ships in the network were able to receive IP addresses under any circumstances. It is 6% higher than the existing studies. And it suggests that if variables are adjusted to each port's environment, it may show further improved results. Second, this work shows us that it takes all vessels an average of 10 seconds to receive IP addresses regardless of conditions. It represents a 50% decrease in time compared to the average of 20 seconds in the previous study. Also Besides, taking it into account that when existing studies were on 50 to 200 vessels, this study on 100 to 400 vessels, the efficiency can be much higher. Third, existing studies have not been able to derive optimal values according to variables. This is because it does not have a consistent pattern depending on the variable. This means that optimal variables values cannot be set for each port under diverse environments. This paper, however, shows us that the result values from the variables exhibit a consistent pattern. This is significant in that it can be applied to each port by adjusting the variable values. It was also confirmed that regardless of the number of ships, the IP allocation ratio was the most efficient at about 96 percent if the waiting time after the IP request was 75ms, and that the tree structure could maintain a stable network configuration when the number of IPs was over 30000. Fourth, this study can be used to design a network for supporting intelligent maritime control systems and services offshore, instead of satellite communication. And if LTE-M is set up, it is possible to use it for various intelligent services.