• Title/Summary/Keyword: 충돌속도

Search Result 737, Processing Time 0.028 seconds

Whiplash Injury Conditions of Rear-End Collisions at Low-Speed (저속 추돌사고에서 목 상해 조건에 대한 연구)

  • Kim, Myeongju;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.2
    • /
    • pp.58-76
    • /
    • 2019
  • As the number of reported injuries has tended to increase over time, large hospitalization expenditure from excessive medical treatments and hospitalization, and insurance frauds associated with moral hazard in minor collisions have caused a global societal problem. Many occupants of rear-ended vehicles involved in rear-end collisions complain of whiplash injury, which is also known as neck injury, without any anatomical and radiological evidence. With only clinical symptoms, stating that a whiplash injury is a type of injury defined by the Abbreviated Injury Scale would be difficult. Therefore, this study focuses on minor rear-end collisions, where the rear-ender vehicle collides with the rear-ended vehicle at rest. The mathematics dynamic model is employed to simulate a total of 100 rear-end collision scenarios based on various weights and collision speeds and identify how the weights and speeds of both vehicles influence the risk of whiplash injury in occupants involved in minor rear-end collisions. The possibility of an injury is very high when the same-weight vehicles are involved in accidents at collision speeds of 15 km/h or higher. The possibilities are 36% and 84% with collision speeds of 15 km/h and 20 km/h, respectively, if weights are disregarded.

Study on Erosion of Carbon Fiber Reinforced Plastic Composite (탄소섬유강화복합재료의 마식에 관한 연구)

  • Kim, Am-Kee;Kim, Il-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.291-297
    • /
    • 2008
  • The solid particle erosion behaviour of unidirectional carbon fiber reinforced plastic (CFRP) composites was investigated. The erosive wear of these composites was evaluated at different impingement angles ($30^{\circ}$, $45^{\circ}$, $60^{\circ}$, $90^{\circ}$), different impact velocities (40, 55, 60, 70m/s) and at three different fiber orientations ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$). The erodent was SiC sand with the size $50-100{\mu}m$ of irregula. shapes. The result showed ductile erosion behaviour with maximum erosion rate at $30^{\circ}$ impingement angle. The fiber orientations had a significant influence on erosion. The erosion rate was strongly dependent on impact velocity which followed power law $E{\propto}\;V^n$. Based on impact velocity (V), impact angle (${\alpha}$) and fiber orientation angle (${\beta}$), a method was proposed to predict the erosion rate of unidirectional fiber reinforced composites.

NE/NASTRAN과 FEMAP을 이용한 선박과 케이슨의 충돌 응답 해석

  • 주서진;백영인;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.674-684
    • /
    • 2002
  • 선박이 물품의 제하 및 적하를 위하여 컨테이너 부두에 접항시 선박의 케이슨과의 충돌에 의한 케이슨의 발생 응력을 파악함으로써 구조 안정성을 검토하였다. 선박이 일정 속도로 항만에 접항시 선박은 케이슨에 부착된 방충재와 충돌하게 된다. 케이슨에 부착된 방충재는 선박의 운동에너지를 흡수하여 케이슨으로 전달되는 전달 에너지를 최소화하여 케이슨의 구조물에 발행하는 응력을 최소화하도록 설계한다. (중략)

  • PDF

Efficient SDF-based Approach to Reduce the Trembling Issue in Cloth-Solid Collisions (옷감-고체 충돌에서 떨림 문제를 줄이기 위한 효율적인 SDF 기반 접근 방식)

  • Eun-Su Park;Jong-Hyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.371-374
    • /
    • 2024
  • 본 논문에서는 PBD(Position-based dynamics)를 이용한 옷감 시뮬레이션에서 페이스(Face) 및 에지(Edge)의 충돌/접촉을 처리할 때 나타나는 표면 떨림 문제를 SDF(Signed Distance Field) 접근법을 통해 안정적으로 해결할 수 있는 기법을 제안한다. 충돌 제약 조건을 이용한 충돌처리에서 나타나는 옷감 시뮬레이션의 떨림 현상을 개선하기 위해 본 논문에서는 페이스 및 에지 내부에 존재하는 충돌 지점의 속도를 충돌 법선 방향과 접선 방향으로 나누어 계산하는 과정을 거치며, 그 운동량을 페이스 및 에지에 포함된 연결된 정점(Vertex)에 전달한다. 본 논문에서 제안하는 기법은 일반적인 SDF 기반 충돌 처리에서 나타나는 충돌 시 떨림 현상을 개선하며, 기존의 방법보다 안정적인 SDF 충돌처리가 가능하기 때문에 다양한 변형체 재질을 시뮬레이션 할 때 활용될 수 있다.

  • PDF

A Study on Ship Collision Avoidance and Order of Priority Designation Model (선박 충돌회피 우선순위지정 및 회피모델 연구)

  • Kim, Seong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5442-5447
    • /
    • 2013
  • This paper focuses on development of SCAAM(Ship Collision Avoidance Assignment Model) for avoiding ship collison at sea. We take a new look at DCPA, TCPA, VCD, collision concept for ship collision avoidance and propose SCAAM using DCPA pre-assignmented by a ship master on information collected by other ship's AIS, GPS (course-speed, destination, length, width, tonnage etc). If A ship is a collision situation, the ship master makes a decision where the ship makes a evasion voyage or not continually using SCCAM. If ship master decides a evasion voyage, the ship is voyaged by CORLEGS (International Regulations for Preventing Collisions at Sea). This paper contributes to safety navigation by decreasing the ship collision accident by human's error.

Dynamic Characteristics of Composite Support Structures with Different Car Crash Speeds (다양한 차량 충돌속도에 따른 복합재료 지주구조의 동적 거동 특성)

  • Lee, Sang-Youl
    • Composites Research
    • /
    • v.28 no.2
    • /
    • pp.65-69
    • /
    • 2015
  • This study dealt with dynamic characteristics by real car crash simulation of composite support structures for road facilities. The effects of different material properties of composites for various car crash speeds are studied using the LS-DYNA finite element program for this study. In this study, the existing finite element analysis of steel support structures using the LS-DYNA program is further extended to study dynamic behaviors of the support structures made of various composite materials. Based on the passenger safety assessment, the numerical results for various parameters are verified by comparing different models with internal energy occurred in the support and car.

Automatic Ship Collision Avoidance Algorithm based on Probabilistic Velocity Obstacle with Consideration of COLREGs (국제해상충돌예방규칙을 고려한 확률적 속도 장애물 기반의 선박 충돌회피 알고리즘)

  • Cho, Yonghoon;Han, Jungwook;Kim, Jinwhan;Lee, Philyeob
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.75-81
    • /
    • 2019
  • This study presents an automatic collision avoidance algorithm for autonomous navigation of unmanned surface vessels. The performance of the collision avoidance algorithm is heavily dependent on the estimation quality of the course and speed of traffic ships because collision avoidance maneuvers should be determined based on the predicted motions of the traffic ships and their trajectory uncertainties. In this study, the collision avoidance algorithm is implemented based on the Probabilistic Velocity Obstacle (PVO) approach considering the maritime collision regulations (COLREGs). In order to demonstrate the performance of the proposed algorithm, an extensive set of simulations was conducted and the results are discussed.

The Design of Position-Speed Mode Switching PID Controller for the Soft Landing of A Machine Having Travel Range Limitation (운동 범위 제약을 가진 기계의 연착륙을 위한 위치-속도 모드전환 PID제어기 설계)

  • Heo, Taekwang;Lee, Wootaik
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.18-20
    • /
    • 2018
  • 본 논문에서는 위치-속도 모드전환 제어기를 제안하고 이 제어기를 활용한 운동범위 제약을 가진 기계의 연착륙 방법을 제시한다. EGR 밸브와 같은 기계제품들은 이동할 수 있는 범위를 가지며 범위 내에서 위치를 제어한다. 위치제어 중 양끝 위치로 이동시 기계는 빠른 속도로 충돌할 수 있다. 속도가 빠르면 빠를수록 충돌 시, 충격력이 커지며, 충격력으로 기구물은 빠르게 마모되고 수명을 단축시킬 수 있다. 따라서 양끝 위치 이동 시, 일시적으로 속도를 제어할 수 있는 제어기가 필요하다. 제안된 위치-속도 모드전환제어기는 Hanus Scheme을 사용하여 모드전환 시, 범프효과로 인한 부작용을 감소시켰으며, 모드전환 이후 모드 전환된 제어기의 지령을 빠르게 추종한다. 마지막으로, EGR 밸브 양끝 위치 학습알고리즘에 적용시켜 시험하였다.

  • PDF

A Study on Impact Testing of a Rolling-stock Windscreen (철도차량 전면창유리 충격시험에 관한 연구)

  • Jeon, Hong Kyu;Park, Chan Kyoung;Seo, Jung Won;Jeon, Chang Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.365-371
    • /
    • 2013
  • This study describes impact test methods for a rolling-stock windscreen executed in Korea and Europe. Air-pressurized impact test equipment for the front windscreens of high speed trains was designed and manufactured. The equipment is capable of launching a projectile at 500km/h, in accordance with EN 15152's impact test method. Calibration of the test equipment was conducted to find an equation relating air pressure and projectile velocity. Specimens ($1000mm{\times}700mm$) having similar specifications with the front windscreens in metro and conventional trains were used to conduct impact tests with this equipment to research the impact characteristics of the screens according to the impact velocity.

An Animation Speed-independent Collision Detection Algorithm (애니메이션 속도에 무관한 충돌 탐지 알고리즘)

  • 김형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.247-256
    • /
    • 2004
  • This paper presents an efficient collision detection algorithm the performance of which is independent of animation speed. Most of the previous collision detection algorithms are incremental and discrete methods, which find out the neighborhood of the extreme vertex at the previous time instance in order to get an extreme vertex at each time instance. However, if an object collides with another one with a high torque, then the angular speed becomes faster. Hence, the candidate by the incremental algorithms may be farther from the real extreme vertex at this time instance. Therefore, the worst time complexity nay be $O(n^2)$, where n is the number of faces. Moreover, the total time complexity of incremental algorithms is dependent on the time step size of animation because a smaller time step yields more frequent evaluation of Euclidean distance. In this paper, we propose a new method to overcome these drawbacks. We construct a spherical extreme vertex diagram on Gauss Sphere, which has geometric properties, and then generate the distance function of a polyhedron and a plane by using this diagram. In order to efficiently compute the exact collision time, we apply the interval Newton method to the distance function.