• Title/Summary/Keyword: 충돌속도

Search Result 736, Processing Time 0.032 seconds

The Study for the Evaluation of the Ship Collision Force to the Substructure of Bridges (교각에 작용하는 선박의 충돌력 산정에 대한 연구)

  • Hong, Kwan-Young;Lee, Gye-Hee;Chung, Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.738-741
    • /
    • 2010
  • 최근 국내에서 해상교량 건설이 증가하면서 교량에 충돌하는 선박의 충돌력에 대한 관심도 증가하지만 선박충돌력에 대한 국내 기준은 AASHTO LRFD에 근거를 두고 있는 실정이다. AASHTO LRFD에 의한 선박충돌력은 Woisin의 평균충돌력 개념에 바탕을 두고 있으며, 충돌속도가 증가함에 따라 AASHTO LRFD에서 제시하는 충돌력의 변화곡선을 따르고 있다. 하지만 AASHTO에서 제시된 충돌력 변화곡선은 선박의 최대충돌력 변화곡선과 같이 선형적 변화를 보이는 반면, 본 선박 충돌해석 결과의 평균충돌력은 최대충돌력의 선형적 변화거동과 일치하지 않는 것으로 나타났다. 따라서 본 논문에서는 선박의 비선형 충돌해석을 통하여 AASHTO LRFD에 의해 산정되는 선박충돌력의 부적절성을 거론하였다.

  • PDF

Analysis about Speed Variations Factors and Reliability of Traffic Accident Collision Interpretation (교통사고 충돌해석의 속도변화 인자 및 신뢰성에 관한 연구)

  • Lim, Chang-Sik;Choi, Yang-Won;Jeong, Ho-Kyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4D
    • /
    • pp.539-546
    • /
    • 2011
  • Traffic accident collision interpretation is composed of various shapes, and speed variations working to the vehicle during collision are utilized as a very important factor in evaluating collision degrees between vehicles and safety of passengers who got in the vehicle. So, methods of interpreting results on speed variations utilizing simulation programs on the collision interpretation become necessary. By the way, reliability evaluation on each program is being required because various collision interpretations simulations are spread widely. This study utilized collision interpretation programs such as EDSMAC and PC-CRASH adopting completely different physical approaches, and then carried out collision experiments of one-dimensional front and two-dimensional right angle while changing values of a lot of collision factors such as vehicle's weight, center of gravity, rolling resistance, stiffness coefficient, and braking forces among early input conditions. Also, the study recognized effects of collision factors to speed variations as output results during crashing. As a result of this research, two simulation programs showed same speed variations together on the vehicle's weight, center of gravity, and braking forces. Stiffness coefficient of the vehicle reacted to EDSMAC only, and rolling resistance coefficient did not affect any particular influences on speed variations. However, there appeared a bit comparative differences from the speed variation's values, and this is interpreted as responding outcomes by applying fixed properties values to each simulation program plainly. Therefore, reliability on analysis of traffic accident collisions shall be improved by doing speed analysis after taking the fixed value of simulation programs into consideration.

A Study on the Correlation between Effective Impact Speed and the Severity of Collision Accidents with Fishing Vessels (유효충돌속도에 따른 어선 충돌사고 피해 상관성에 관한 연구)

  • Hyungoo Park;Young-Soo Park;Sang-Won Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.202-211
    • /
    • 2023
  • In maritime accidents, collisions involving fishing vessels are more frequent and severe than those involving other types of vessels. Previous cases of collision accidents caused by fishing vessels causing serious damage implied that fishing vessels maintained high speeds until just before the collision and that they collided with much larger vessels. This study investigated the correlation between the severity of ship damage resulting from fishing vessel collisions and the vessel's speed. The effective impact speed commonly used in the road transport sector was utilized to analyze ship collision accidents. The study collected collision data between fishing vessels and between fishing vessels and non-fishing vessels from accident investigation reports from 2016 to 2022. The effective impact speed was calculated for a total of 617 vessels. After using binary and multinomial logistic regression methodology, the analysis was carried out with effective impact speed as the independent variable and severity of accident as the dependent variable. The analysis revealed a statistically significant correlation between the effective impact speed and the severity of ship damage, indicating that the severity of ship damage is influenced not only by the effective impact speed but also by the tonnage of the vessel.

Methodology for Evaluating Effectiveness of In-vehicle Pedestrian Warning Systems Using a Driving Simulator (드라이빙 시뮬레이터를 이용한 차내 보행자 충돌 경고정보시스템 효과평가 방법론 개발 및 적용)

  • Jang, Ji Yong;Oh, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.2
    • /
    • pp.106-118
    • /
    • 2014
  • The objective of this study is to develop a methodology for evaluating the effectiveness of in-vehicle pedestrian warning systems. Driving Simulator-based experiments were conducted to collect data to represent driver's responsive behavior. The braking frequency, lane change duration, and collision speed were used as measure of effectiveness (MOE) to evaluate the effectiveness. Collision speed data obtained from the simulation experiments were further used to predict pedestrian injury severity. Results demonstrated the effectiveness of warning information systems by reducing the pedestrian injury severity. It is expected that the proposed evaluation methodology and outcomes will be useful in developing various vehicular technologies and relevant policies to enhance pedestrian safety.

Analysis of vehicle central line invasion accidents using simulation (시뮬레이션을 이용한 차량의 중앙선 침범 사고 해석)

  • Han, Chang-Pyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.507-513
    • /
    • 2021
  • This study examined the final stop position and posture of both vehicles, the damaged part of the vehicle, the road surface, the specifications of the vehicle, and the angle of impact, centering on the case of a collision in which no surface trace was found. As a result of the simulation, the impact velocity of an SM5 and Lexus was 131 km/h and 74 km/h, respectively, and the impact angle of the SM5 and Lexus was 0.91° and -161.07°, respectively. The cause of the accident was that the SM5 passed through the intersection exceeding the maximum speed limit of 61 km/h and entered the Lexus' left turn lane. Lexus collided during the evacuation to avoid the collision. The collision trajectory error rate of the simulation was approximately 1.4%. Of the subjective experience of accident investigators, the collision dynamics and vehicle engineering aspects and simulations were actively utilized to provide close-to-fact cause identification.

Effect of Reinforcement Ratio and Impact Velocity on Local Damage of RC Slabs (철근비 및 충돌속도가 RC 슬래브의 국부손상에 미치는 효과)

  • Choi, Hyun;Chung, Chul Hun;Yoo, Hyeon Kyeong;Kim, Sang Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.311-321
    • /
    • 2011
  • To analysis the effect of reinforcement ratio and impact velocity on local damage, a series of impact analyses are performed to predict local effects. According to these results, the reinforcement ratio has no effect on the penetration depth and perforation thickness, but notable change to the scabbing area were observed. The higher the missile velocity becomes, the greater the degree of local damage to the reinforced concrete slabs is. Analysis results will be useful in the impact-resistance design of containment buildings and structures.

Collision Fragility Analysis of Offshore Bridge by Ship (선박에 의한 해상교량의 충돌취약도 해석)

  • Cho, Byung-Il;Kim, Dong-Hyawn;Oh, Young-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.4
    • /
    • pp.224-229
    • /
    • 2010
  • Collision fragility analysis of offshore bridge by ship was performed. Collision velocity and angle were chosen as random variables then collision of 18,000DWT and 30,000DWT ships with bridge was analyzed. Displacement response surface of bridge by ship collision was estimated by varying ship velocity from 2 m/s to 7 m/s. Using the result of reliability analysis, fragility curves of collision was established and risk of offshore bridge to collision velocity as median and log-standard deviation was presented.

A Method for Pedestrian Accident Reconstruction Using Optimization (최적화방법을 이용한 보행자 충돌사고 재현기법 개발)

  • 유장석;홍을표;장명순;박경진;손봉수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.105-113
    • /
    • 2002
  • As the number of pedestrian accident increases, the reconstruction of an accident becomes important to find the source of the fault. Generally, accidents are reconstructed by the intuition of experts or primitive physics. A reconstruction method is proposed using sophisticated optimization technology. At first, a dynamic simulation model is established for the accident environment. Occupant analysis for automobile crashworthiness is employed. The situation before an accident is identified by optimization. The impact velocity and the position of the pedestrian are utilized as design variables. The design variables are found by minimizing the difference between the simulation and the real accident. The optimization process is performed by linking an occupant analysis program MADYMO to an optimization program VisualDOC. Since the involved analysis is dynamics and highly nonlinear, response surface method is selected for the optimization process. Problems are solved for various situations.

Automobile Collision Reconstruction Using Post-Impact Velocities and Crush Profile (충돌 후 속도와 충돌 변형으로부터 자동차 충돌 재구성)

  • 한인환
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.107-115
    • /
    • 2000
  • We suggest a method which solves the planar, two vehicle collision reconstruction problem. The method based on the Principle of impulse and momentum determines the pre-impact velocity components from Post-impact velocity components, vehicle Physical data and collision geometry. A novel feature is that although the impact coefficients such as the restitution coefficient and the impulse ratio are unknown, the method can estimate automatically the coefficients and calculate the pre-impact velocity components. This reverse calculation is important for vehicle accident reconstruction, since the pre-impact velocities are unknown and Post-impact Phase is the starting Point in a usual collision analysis. However. an inverse solution is not always Possible with the analytical rigid-body impact model. Mathematically, one does not exist under the common velocity condition. On the other hand, our method has a capability of reverse calculation under the condition if the absorbed energy during the collision process can be estimated using the crush profile. To validate the developed collision reconstruction a1gorithm, we use car-to-car collision test results. The analysis and experimental results agree well in the impact coefficients and the Pre-impact velocity components.

  • PDF

Design and Development of Electromagnetic Launcher for Low-High Velocity Impact Test (중고속 충돌 실험을 위한 전자기력 발사장치의 설계와 제작)

  • Kim, Hong Kyo;Noh, Hak Gon;Kang, Beom Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.10
    • /
    • pp.857-864
    • /
    • 2016
  • Many plane, UAV and drone fly in the sky as development of aviation industry. Plane and UAV fly and drone's propellers rotate so fast. Impact between flying objects which have high velocity threats passengers. Also the impact damages people, building and various property. Plane's operating speed is near sound velocity(340m/s), and propeller's rotating speed is less than that. Until now, impact experiment uses gas gun to get speed and the gun needs large space to entirely air expansion. Electromagnetic launcher, especially railgun, needs smaller space than gas gun to get enough speed about 500m/s. This paper explains electromagnetic launcher's operating principle, shows making electromagnetic launcher design guide line and suggests that it is a better apparatus to get low-high velocity.