• 제목/요약/키워드: 충돌분무

검색결과 203건 처리시간 0.026초

분무액적과 벽의 상호작용에 대한 연구 (Study of Spray Droplet/Wall Interaction)

  • 양희천;유홍선;정연태
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.86-100
    • /
    • 1998
  • The impingement of the fuel spray on the wall within the combustion chamber in compact high-pressure injection engines and on the intake port wall in port-fuel-inje- ction type engines is unavoidable. It is important to understand the characteristics of impinging spray because it influences on the rate of fuel evaporation and droplet distrib- ution etc. In this study, the numerical study for the characteristics of spray/wall interaction is performed to test the applicability and reliability of spray/wall impingement models. The impingement models used are stick model, reflect model, jet model and Watkins and Park's model. The head of wall-jet eminating radilly outward from the spray impingement site contains a vortex. Small droplets are deflected away from the wall by the stagnation flow field and the gas wall-jet flow. While the larger droplets with correspondingly higher momentum are impinged on the wall surface and them are moved along the wall and are rolled up by wall-jet vortex. Using the Watkins and Park's model the predicted results show the most reasonable trend. The rate of increase of spread and the height of the developing wall-spray is predicted to decrease with increased ambient pressure(gas density).

  • PDF

분무간 충돌시스템에 대한 수치해석적 연구 (A Numerical Study on the Spray-to-Spray Impingement System)

  • 고권현;유홍선;이성혁
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.75-80
    • /
    • 2001
  • The present article deals with the numerical calculations for the inter-spray impingement of two diesel sprays under the conditions of high injection pressure. The Wave model involving the cavitation effect inside the nozzle was used for describing the atomization process. In particular, a hybrid model for drop collision was newly suggested in this study and compared with the O'Rourk's model, which has been widely used for diesel sprays. The impingement angles of 60 and 90 degrees were considered for simulation of non-evaporative diesel sprays. The calculated results for tip penetration were compared with experimental data and the Sauter Mean Diameter(SMD) characteristic was analyzed. It was concluded that the hybrid model slightly shows better agreement with experimental data than the O'Rourke's model. However, the more elaborate study should be needed for better understanding of spray-to-spray impingement phenomena.

  • PDF

가압 분무실내 스프레이 충돌판에서 나타나는 비정상 열전달 측정에 관한 연구 (An Experimental Study on Unsteady Heat Transfer of Spray-Impinging Plate in a Pressurized Chamber)

  • 조창권;이열;구자예
    • 대한기계학회논문집B
    • /
    • 제24권1호
    • /
    • pp.60-67
    • /
    • 2000
  • An experimental investigation on transient heat transfer phenomena of impinging diesel-spray on a flat plate in a pressurized chamber is carried out. A diesel spray is injected from a single-hole nozzle and impinges to a heated flat plate in the chamber. A fast-response thermocouple installed in the top surface of the plate measures the transient variation of surface temperature of the plate under various conditions of the chamber pressures. Utilizing the semi-infinite model, the temporal variation of the heat flux on the plate is determined. Effects of various parameters, such as vertical distances between the nozzle and the plate, radial distances from the injection-axis, and the chamber pressures, on the heat flux characteristics of impinging diesel-spray are studied.

연료 제트의 두 액적간의 충돌기구에 관한 실험적 연구 (Experimental Investigation of Collision Mechanisms Between Binary Droplet of Fuel Jet)

  • 이근희;김사엽;이창식
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.187-192
    • /
    • 2008
  • In this study, the mechanisms of binary droplet collision were studied with diesel, ethanol and purified water. The droplet collisions of liquid droplet have been investigated for the same droplet diameter. In order to obtain the digital images of the droplet collision behavior, the experimental equipment was composed of the droplet generating system and the droplet visualization system. The droplets were produced by the vibrating orifice monodisperse generator. The visualization system consisted of a long distance microscope, a light source, and a high speed camera. The outcomes of binary droplet collision can be divided into four regimes, bouncing, coalescence, reflexive separation and stretching separation. The impact angle and the relative velocity of binary droplet are main parameters of collision phenomena, so the transition mechanism of droplet collision can be divided by the impact parameter.

  • PDF

분사압력변화가 충돌분무특성에 미치는 영향에 관한 수치적 고찰 (Numerical Analysis of the Effect of Injection Pressure Variation on Impaction Spray Characteristics)

  • 김승철
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.47-53
    • /
    • 1999
  • Small compression-ignition direct injection engines have been developed as a measure to improve a fuel efficiency and reduce harmful exhaust gases. Those small engines generally employ high injection pressure increase on the spray impacting on a wall is discussed in this paper. The gas phase is modelled by the Eulerian continuum conservation equations of mass momentum energy and fuel vapour fraction. The liquid phases is modelled following the discrete droplet model approach in Lagrangian form and the droplet wall interaction is modelled as a func-tion of the velocity normal to impaction lands. The droplet distributions vapor fractions and gas flows are analyzed in various injection pres-sure cases. The penetrations of wall spray and vapor increase and the Sauter mean diameter decreases with increasing injection pressure.

  • PDF

극초고압 충돌분무시 충돌면의 온도거동에 관한 연구 (A Study on the Temperature Behavior of Impinging Plate in Impinging Spray with Ultra High pressure)

  • 정대용;김홍준;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.442-447
    • /
    • 2003
  • The characteristics of instantaneous wall-surface temperature of impinging plate in case of ultra high pressure injection have been measured and analyzed by using thin film instantaneous temperature probe and ultra high pressure injection equipment. The decreasing rate of temperature was greater in case of higher temperature of impinging plate. Temperature drop was largest at center of piston and it was slight for others. Instantaneous temperature decreases rapidly with increasing injection pressure. But above 2,500bar of injection pressure, the decreasing rates are slightly affected by increasing injection pressure.

  • PDF

OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향 (The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber)

  • 임덕경;박권하
    • 한국자동차공학회논문집
    • /
    • 제9권4호
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성 (Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM)

  • 김재휘;김진환;박권하
    • 동력기계공학회지
    • /
    • 제1권1호
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

극초고압 디젤분무의 충돌면 온도거동에 관한 연구 (A Study on the Temperature Behavior on Impinging Plate of Diesel Spray with Ultra High Pressure)

  • 이종태;정대용
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.402-408
    • /
    • 2005
  • The instantaneous temperature behaviors on impinging plate in case of ultra high pressure have been measured and analyzed by using the instantaneous temperature probe and ultra high pressure injection equipment. The temperature drop was largest at P1 which is center of impinging spray and decreased with propagation of spray to the radius direction. The temperature drop was bigger in case of higher temperature of impinging plate. The temperature drop decreased with increase of injection pressure. But decreasing rate of temperature drop was slight over 2,500 bars. Therefore, it was predicted that the fuel evaporation versus the increase of injection pressure was maximum at around 2,500 bars.

충돌벽 노즐의 저속 제트에 의한 액막 특성 연구 (A Study on the Characteristics of the Liquid Sheet Formed by a Splash Plate Nozzle at Low Jet Velocities)

  • 박희웅;김지담;송가은;강보선
    • 한국분무공학회지
    • /
    • 제29권2호
    • /
    • pp.75-82
    • /
    • 2024
  • In this study, the thickness of the liquid sheet formed by a splash plate nozzle at low jet velocities was measured by the direct contact method. The spatial distribution characteristics of the sheet thickness in the radial and circumferential directions, and the effects of jet velocity and liquid viscosity were analyzed. The wavy surface was observed for low viscosity water, but not for high viscosity glycerol solutions. The sheet thickness decreased as the circumferential angle or the distance from the impinging point increased. The sheet thickness increased as the liquid viscosity increased. Comparison with the theoretical predictions for two impinging jets showed some differences from the measurement results.