• Title/Summary/Keyword: 충격해석

Search Result 1,701, Processing Time 0.026 seconds

High Velocity Impact Analysis of Kevlar29/Phenolic Composite Plate (케블라 복합재 평판의 고속충돌 특성 수치해석)

  • Ahn, Jeoung-Hee;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.22 no.2
    • /
    • pp.18-23
    • /
    • 2009
  • Failure of Kevlar29/Phenolic composite plate under high velocity impact of FSP(Fragment Simulation Projectile) is investigated using a non-linear explicit finite element code, LS-DYNA. Composite laminate and impactor are idealized by solid element and interface between laminas are modeled by tied-break element in LS-DYNA. Interaction between impactor and laminate is simulated face-to-face eroding contact algorithm. When the stress level meets a failure criteria, the layer in the element is eroded. Numerical results are verified by existing test results.

Computer Simulation of Izod Impact Test for Impact Modifier Reinforced Nylon6 (충격보강제가 포함된 나일론 6에서 Izod 충격시험의 컴퓨터 모사)

  • Park, Yohan;Lyu, Min-Young;Paul, D.R.
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.172-179
    • /
    • 2013
  • Impact modifier reinforced polymers are frequently used. In this study, Izod impact test has been simulated to analyze the mechanism of impact reinforcement of Nylon6 which contains impact modifier. The modeling of rubber particles added to Nylon6 as an impact modifier has been attempted. Based on the modeling, simulation of Izod impact test has been performed to observe the distribution and direction of stress at the cross-section of impact specimen. Three computer simulation models for Nylon6 were investigated. Those were without impact modifier, containing impact modifier without surface treatment, and containing impact modifier with surface treatment in the Nylon6. Simulation results showed that the stress which originated at the notch surface propergated to the inside of specimen round a impact modifier. In addition to that, impact modifier reinforced Nylon6 specimen showed low stress ditribution in the cross-section specially at notch surface. Principal stress in perpendicular direction to crack was also lowered in impact modifier reinforced Nylon6. These enhanced impact resistance reduced and crack propergations. Through this study it was realized that the computer simulation can be utilized to investigate the property enhacement of composite materials.

Verification of the Reliability of the Numerical Analysis for the Crash Impact Test of Rotorcraft Fuel Tank (회전익항공기용 연료탱크 충돌충격시험에 대한 수치해석 신뢰성 검증)

  • Kim, Sungchan;Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.918-923
    • /
    • 2018
  • The main function of a fuel tank is to store fuel. On the other hand, the structural soundness of the fuel tank is related directly to the survival of the crew in an emergency situation, such as an aircraft crash, and the relevant performance is demonstrated by a crash impact test. Because crash impact tests have a high risk of failure due to the high impact loads, various efforts have been made to minimize the possibility of trial and error in the actual test at the beginning of the design. Numerical analysis performed before the actual test is a part of such efforts. For the results of numerical analysis to be reflected in the design, however, the reliability of numerical analysis needs to be ensured. In this study, the results of numerical analysis and actual test data were compared to ensure the reliability of numerical analysis for the crash impact test of a rotorcraft fuel tank. For the numerical analysis of a crash impact test, LS-DYNA, crash analysis software, was used and the ALE (arbitrary Lagrangian Eulerian) technique was applied as the analysis method. To obtain actual test data, strain gages were installed on the metal fittings of the fuel tank and linked to the data acquisition equipment. The strain and stress of the fuel tank fitting were calculated by numerical analysis. The reliability of the numerical analysis was enhanced by assessing the error between the strain measurement of the upper fitting obtained from an actual fuel tank and the strain calculated from numerical analysis.

Study on the Noise Reduction of the High Voltage DC Relay (고전압 DC 릴레이의 소음 저감에 관한 연구)

  • Lee, Gyeong-Ho;Kim, Yeong-Bong;Park, Hong-Tae;Son, Jin-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.788-792
    • /
    • 2007
  • 국내외의 자동차 메이커는 고효율, 저공해 자동차 개발에 집중하고 있으며, 그 방법으로 하이브리드 자동차가 최우선시 되고 있다. 하이브리드 자동차의 밧데리 팩을 구성하는 핵심 부품 중 하나인 고전압 직류 릴레이는 주행 중 엔진 구동력을 보조하는 구동모터에 전기 에너지를 공급하는 밧데리의 출력을 개폐하는 기기이다. 고전압 직류 릴레이의 개폐 동작시 발생하는 소음은 자동차 운전 중 실내로 유입되어 운전자의 승차감을 떨어뜨리는 요인이 되므로 릴레이의 개폐 동작시 발생하는 소음 저감을 위한 연구가 필요하다. 본 연구에서는 폐로(ON) 동작시 발생하는 소음 저감을 위해 소음원인 충격력을 감소시키기 위한 이중 접압스프링 구조를 제안하였으며, 소음 저감 성능평가를 수행하였다. 먼저 정확한 충격해석을 위해 고전압 직류 릴레이의 최소 동작 전압인 5.9V부터 상시 인가 전압인 12V까지 총 6개의 전압레벨에서 릴레이의 전자력을 측정하였으며, 기존 접압스프링 구조와 이중 접압스프링 구조에 관하여 외연적 탄소성 유한요소 프로그램인 LS-DYNA를 사용하여 충격해석을 수행하였다. 고전압 직류 릴레이의 소음원인 가동전극과 고정전극에서 발생하는 일차 충격력과 가동철심과 고정철심에서 발생하는 이차 충격력을 비교, 평가하였다.

  • PDF

Reconstruction of Damage-Induced Impact Force of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals (고분자 압전센서 신호를 이용한 Gr/Ep 복합재 적층판의 손상유발 충격하중의 복원)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • v.15 no.5
    • /
    • pp.7-13
    • /
    • 2002
  • The piezoelectric thin film sensor has good characteristics to observe the impact responses of composite structures. The capabilities for monitoring impact behavior of Gr/Ep laminates subjected to damage-induced impact using the PVDF(polyvinylidene fluoride) film sensor were examined. For a series of low-velocity impact tests from low energy to damage-induced energy, simulated sensor signals were compared with measured signals and the PVDF film sensor. Local impact damages(matrix cracking and delamination) were found at three impact tests, but the measured signals agreed well with the simulated sensor signals based on the linear relationship between the impact forces and the PVDF film sensor signals. And the inverse technique was applied to reconstruct the impact forces using the PVDF film sensor signals. Most of reconstructed impact forces had good agreement with the measured forces. The comparison results showed that the local damage due. to low-velocity impact didn't disturb the global impact responses of composite laminates and the reconstruction of impact forces from PVDF sensor signals wasn't affected by the local damage.

Computer Simulation of the Effects of Content and Dispersion of Impact Modifier on the Impact Strength of Nylon 6 Composites (충격보강제의 함유량과 분산이 나일론 6 복합체의 충격강도에 미치는 영향의 컴퓨터 해석)

  • Woo, Jeong Woo;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.49 no.4
    • /
    • pp.284-292
    • /
    • 2014
  • Polymer has low mechanical strength than metal. In particular, the impact strength is very weak. Impact modifier reinforced polymers are frequently used. Impact strength of reinforced polymer is changed according to content and distribution of impact modifier. In this study, izod impact test has been simulated to analyze the mechanism of impact modifier reinforced Nylon 6. Computational results were compared for numbers and distributions of impact modifier. As the total volume of rubber particles decreased, the stress at the notch increased for the simulation model that the volume decreases as particle number increases. As the surface area of particle sphere increased, the stress and difference of principle stress increased for the simulation model that the total surface increases as particle number increases.

Shock Analysis of Magnetic Rotating Disk and Head (자기 회전 디스크와 헤드의 충격해석)

  • 장영배;박대경;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.533-538
    • /
    • 2002
  • This research demonstrates the transient response of a head disk assembly subjected to a half-sine shock pulse in the axial direction. In case of disk analysis, the numerical method presented by Barasch and Chen is used. Galerkin method is used with mode shape by numerical method. head-suspension system is modeled by the cantilever in order to get simulation results. Simulation results about total system of HDA are calculated by Runge-Kutta method.

  • PDF

Nonlinear Structural Analysis of the Spent Nuclear Fuel Disposal Canister Subjected to an Accidental Drop and Ground Impact Event (추락낙하 사고 시 지면과 충돌하는 고준위폐기물 처분용기의 비선형구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.75-86
    • /
    • 2019
  • The biggest obstacle in the nuclear power generation is the high level radioactive waste such as the spent nuclear fuel. High level radioactivities and generated heat make the safe treatment of the spent nuclear fuel very difficult. Nowadays, the only treatment method is a deep geological disposal technology. This paper treats the structural safe design problem of the spent nuclear fuel disposal canister which is one of the core technologies of the deep geological disposal technology. Especially, this paper executed the nonlinear structural analysis for the stresses and deformations occurring in the canister due to the impulsive force applied to the spent nuclear fuel disposal canister in the case of an accidental drop and ground impact event from the transportation vehicle in the repository. The main content of the analysis is about that the impulsive force is obtained using the commercial rigid body dynamic analysis computer code, RecurDyn, and the stress and deformation caused by this impulsive force are obtained using the commercial finite element static structural analysis computer code, NISA. The analysis results show that large stresses and deformations may occur in the canister, especially in the rid or the bottom of the canister, due to the impulsive force occurring during the collision impact period.

A Numerical Investigation for Prediction of Shock Deceleration of Conical Impactor in Gas-Gun Tests (가스건 시험에서 원추형 충격자의 충격 감가속도 예측에 관한 전산해석적 연구)

  • Yoon, Hee;Oh, Jong Soo;Jung, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.5
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, a numerical investigation is conducted for the shock deceleration prediction of a conical impactor in gas-gun tests. With the development of weapon systems, gas-gun tests are required to validate the survivability and structural reliability of devices under test (DUT) in high-G shock environments, such as those over ten thousand Gs or more. As shock endurance is highly influenced by various bird parameters, such as mass, velocity, and pressure, it is important to determine the appropriate test conditions to generate a high-G shock environment. However, experimental repetitive studies are inefficient to validate test conditions in terms of economic aspects. Therefore, a numerical technique is required to replace experimental gas-gun tests. Here, a numerical investigation is conducted with ANSYS AUTODYN using explicit code. Through this investigation, the dynamic behavior of DUT is presented. In addition, the results of numerical studies are verified through a comparison with the experimental results of a gas-gun test.

원자로 압력용기강의 인성평가를 위한 샤피충격 하중-변위 곡선의 해석

  • Kim, Ju-Hak;Kim, Hun;Ji, Se-Hwan;Lee, Don-Bae;Hong, Jun-Hwa
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.284-289
    • /
    • 1996
  • 국산 원자로 압력용기강(ASME SA508 cl.3)을 대상으로 표준 샤피충격시험편(2 mm V- notch)과 피로균열(precracked Charpy) 시험편을 제작하여 계장화(instrumented)충격시험을 실시하고, 충격시험시 하중점(load point)의 변위(displacement) 혹은 시간의 변화를 하중의 변화와 함께 측정하였다. 측정결과를 파괴현상 및 파괴역학과 연계시켜 해석하므로서, 가능한한 소량의 시험편(혹은 시험공정)을 사용하여 필요로 하는 인성평가 관련 정보를 획득할 수 있도록 시도하였다. 그 결과, 파괴과정을 나타내는 하중의 변화를 이용하여 Shear fraction 을 예측할 수 있었고, 하중의 변화와 관계된 변위로부터 Lateral expansion을 추정할 수 있었다. 피로균열 시험편 시험결과로 부터는 충격시의 항복하중, 항복변위, 최고하중 등을 획득하여 균열크기의 함수로 표시되는 시험편 Compliance 를 계산하였고, Equivalent energy 법과 J-integral 법을 적용하여 원자로 압력용기강의 탄소성 동적파괴인 성을 평가할 수 있었다.

  • PDF