• Title/Summary/Keyword: 충격파형

Search Result 63, Processing Time 0.023 seconds

Instability of Plunging Breaking Wave Impact on Inclined Cylinder (경사진 실린더에 작용하는 플런징 쇄파 충격력의 불안정성 고찰)

  • Hong, Key-Yong;Shin, Seung-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.187-192
    • /
    • 2007
  • Impact on cylindrical surface caused by plunging breaking waves is investigated experimentally. The breaking waves are generated in a wave flume by decreasing the wave maker frequencies linearly and focusing the generated wave components at one specific location. The breaking wave packets are based on constant wave steepness spectrum. Three inclination angles of cylinder are applied to examine the effect of contact angle between cylinder and front surface of breaking waves. Also, the effect of cylinder diameter on pressure distribution and its peak value is investigated by adopting three cylinders with different diameters. The longitudinal location of cylinder is slightly moved in eight different points to find out a probable maximum value of impact pressure. The pressures and total force on cylinder surface are measured by piezo-electric pressure sensors and 3-components load cell with 30kHz sampling rate. The variation of peak impact pressures and forces is analyzed in terms of cylinder diameter, inclination angle and location. Also, the pressure distribution on cylindrical surface is examined. The cylinder location and surface position are more important parameters that govern the magnitude and shape of peak pressures, while the cylinder diameter and inclined angle are relatively insignificant. In a certain conditions, the impact phenomenon becomes very unstable which results in a large variation of measured valves in repeated runs.

  • PDF

Waveform characteristics of ultrasonic wave generated from CNT/PDMS composite (CNT/PDMS 복합체로부터 방사된 초음파의 파형 특성)

  • Kim, Gisuk;Kim, Moojoon;Ha, Kanglyeol;Lee, Jooho;Paeng, Dong-Guk;Choi, Min Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.4
    • /
    • pp.459-466
    • /
    • 2019
  • When a laser pulse is irradiated on a CNT (Carbon Nanotube) and PDMS (Poly dimethylsiloxane) composite coated on a transparent PMMA (Poly methyl methacrylate) substrate, a strong ultrasonic wave is generated due to the thermoelastic effect. In this paper, the thermoacoustic theory related to the wave generation by the CNT/PDMS composite was established. The waveforms of ultrasonic waves when a laser pulse having a Gaussian waveform is irradiated on the composite with a thickness of $20{\mu}m$ were numerically simulated. From the results, it was confirmed that ultrasonic shock waves can be generated from the CNT/PDMS composite and the waveforms are changed little even if the physical properties of the composite are changed by ${\pm}20%$. It was found that the peak positive and negative pressures increase as the thermal expansion coefficient increases, or as density, heat capacity and sound speed decreased. However, those changes were not so sensitive with thermal conductivity. In addition, the physical properties of the CNT/PDMS composite fabricated in this study were estimated from the comparison of the measurement and simulation results.

Experimental Study on Response Characteristics of Reinforced Concrete Buildings Due to Waterborne Debris Impact Loads (해일표류물의 충돌에 의한 철근콘크리트 건축물의 응답특성에 관한 실험적 연구)

  • Choi, Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.590-595
    • /
    • 2020
  • In this study, the small-scale collision experiments using a pendulum principle were carried out to evaluate the safety of the reinforced concrete building selected as a tsunami evacuation building due to the collision of the waterborne debris represented by ships. The experimental parameters were set as impact velocity, mass and length of the drifted ship. In this paper, the maximum impact force, impact duration, impact waveform and restitution coefficient affecting building response were investigated in detail. As a result, the impact force waveforms were distributed as a triangle in most of the experimental results, but became closer to a trapezoid as the length of the collision specimen increased. This is the very important result in calculating the momentum (impact waveform area) affecting building response, Furthermore, the restitution coefficients were constant regardless of the impact velocity, but they varied depending on the mass and length of the waterborne debris. However, the restitution coefficient for the mass per unit length of the waterborne debris can be evaluated.

High Resolution for Shallow Seismic Reflection (Applied to the Underground Cavity) (천부층 지진파 반사에 대한 해상도 (지하 공동에 응용))

  • 김소구
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 1993
  • The high resolution studies for shallow seismic reflection are carried out using 24-channel seismograph and the high sensitivity geophone(50-500Hz). In order to study the underground structures such as small faults, fractures, cracks and cavities, it is of great importance to enhance high resolution of the seisrnic records for the targets vertically and laterally. In analysis of high resolution seismic reflection, Nyquist frequency($F_N$) should be lager than the highest frequency in the records and the highest wave number should not be exceed the Nyquist wave number($1/2{\Delta}x$). The highest frequency above the Nyquist will be removed using low pass filter or antialias filter. The trace interval Ax should be taken into account so that the highest wave number(f/v) can be less than $1/2{\Delta}x$. The Fraunhofer diffraction of a hyperbola seismic section above the tunnel appeares on the common offset method, and little first arrivals of direct wave on the single-end shooting, delayed strong impulsive reflections are also shown above the tunnel. Ray Method(Cherveney and Psencik, 1983) also represents the same results that the reflected waves from the tunnel are delayed and single impulsive with little first arrivals, while transrnitted waves through the tunnel are delayed with low frequency.

  • PDF

Source Localization of Single Impact Based on Higher Order Time Frequency (고차-시간 주파수 기술을 이용한 평판에서의 충격 위치추적)

  • Moon, Yoo-Sung;Lee, Sang-Kwon;Yang, Hong-Goon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.129-136
    • /
    • 2011
  • The aim of this paper is to present the method of identifying the impact location on the plate. This basic research has the future purpose to achieve the human-interaction technology based on the signal processing, piezoelectric materials, and wave propagation. The present work concerning the location identification of a single impact on the plate simulated the waveform numerically generated by impact force and applied the SWFOM(sliced Wigner higher fourth order moment) to the waveform to get the arrival time differences due to impact force between three sensors attached to the plate. The simulated signal is useful to get the information for time interval for the only direct wave. This information is used the source localization by using experimental work. The measured signal is also used for source localization of a single impact based on the higher order time frequency as a novel work.

Sand-Box Evaluation for Vibration-Attenuation of Concrete Panels with Recycled Materials (재활용재 혼입콘크리트 패널의 진동감쇠성에 대한 사조실험)

  • 정영수;최우성;조성호
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.171-182
    • /
    • 1998
  • Vibration-controlled concrete has been developed by using various concrete mixtures, such as latex, rubber powders, plastic resins and polystyrene(styrofoam). As part of the recycling research of obsolete aged tires and plastic materials, various vibration-reducing mixtures are used for 10 concrete panels having above 200 kg/cm$^2$ in uniaxial compressive strength. Plywood box with sand uniformly saturated by the raining device has been used for the analysis of the impact wave, of which data have been transfered by the FFT technique to comparatively investigate damping ratios of 10 concrete panels.According to wave propagation analysis on vibration-controlled concrete for this research, it can be concluded that Latex concrete has relatively larger damping ratios than those for noncontrolled normal concrete in a similar compressive strength

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

금속파편 충격위치 자동검출을 위한 파형신호 분석 알고리즘 개발

  • 박기용;장귀숙;김정수;박원만;구인수;함창식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.193-198
    • /
    • 1997
  • 본 논문의 목적은 현재 사용중인 원자력발전소내 금속파편 감시계통 (LMPS: Loose Part Monitoring System)에서 금속파편의 발생위치 평가시 온라인화된 방식을 제안하고 그 효용성을 알아보는 것이다. 현재 사용중인 LMPS들은 센서들을 통해서 기준 진폭수준 이상의 신호가 입력될 때 경보음이 울리고 신호가 기록되도록 되어있다. 이렇게 기록된 신호를 전문가가 분석함으로써 발생한 금속파편 위치 및 계통손상 가능성 등을 평가한다. 그러나 이러한 방법에 의한 신호평가시 경험이 풍부한 전문가에 의해 파편위치 및 손상부위를 평가해야 하므로 많은 시간이 소요되고 금속파편에 의한 손상 잠재성이 큰 경우 즉각적인 조치를 취할 수가 없어 방사능 누출 등의 위험한 상황에 처할 수 있다. 따라서 본 논문에서는 이러한 점에 착안하여 센서로부터의 입력신호 분석 및 평가를 위한 온라인 기법을 제안하고 구조물 모형을 이용한 실험결과를 통하여 그 효용성을 입증한다.

  • PDF

Hyteresis Characteristic Modeling and Inrush Current Analysis (히스테리시스 특성 모델링 및 여자돌입전류 분석)

  • Lee, Jang-Woo;Park, Se-Ho;Rhee, Sang-Bong;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.2285-2286
    • /
    • 2008
  • 여자돌입전류는 변압기 가압 시 발생하는 과도 전류의 한 형태로서 정격의 수배에 크기를 가지며 변압기에 직접적인 손상을 입히거나 보호계전기에 오동작을 유발 할 수 있다. 또한 전기 품질에 영향을 주어 기기에 충격을 입히거나 고장을 불러일으킬 수 있다. 따라서 여자 돌입전류를 분석하고 파악하는 일은 전력계통의 운영에 있어서 매우 중요하다. 본 논문에서는 과도 해석 프로그램인 EMTP(Electric Magnetic Transient Program)를 이용하여 여자돌입전류를 모델링하고, 여자돌입 전류모델링 검증을 통해 전형적인 여자돌입전류 파형에 대한 분석을 실시하였다.

  • PDF

Impulse Electromagnetic Wave Generator (임펄스 전자기파 발생기)

  • Kim, Young-Bae;Jung, Sun-Shin;Lee, Hong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1546-1547
    • /
    • 2006
  • 오늘날 전자기파의 영향은, 제어장비의 내부에 있는 기판의 전자 부품에 전자기적인 충격을 주어 장비의 오동작이나 고장을 일으키는 등 심각한 문제들이 제기 되고 있다. 이러한 임펄스 전자기파는 제어 장치에 연결된 제어전선으로 타고 들어와서 전자장비 내부의 부품들과 반사,공진등을 일으켜서 결국에는 PCB(printed circuit board)에 손상을 입혀서 그 장치들을 사용 못하게 할 수가 있다. 주파수가 광대역인 50MHz 에서 800MHz 까지의 EMI(electro magnetic interference)환경을 만들 수 있는 장치를 제작 하였다. 이러한 UWB(ultra wide band)장치는 고전압펄스를 압축 성형하여, 동작시간이 아주 빠른 ultra fast 스위치를 통해서, 펄스의 기림 시간이 수백ps의 파형을 만들어, 안테나로 전송하여 공간으로 방사시키는 장치에 대해 설계 제작하여 실험한 결과에 대해 논하고자 한다.

  • PDF