• Title/Summary/Keyword: 충격인성

Search Result 144, Processing Time 0.028 seconds

Effect of χ Phase on the Impact Toughness of 25Cr-7Ni-4Mo Super Duplex Stainless Steel (25Cr-7Ni-4Mo 수퍼 2상 스테인리스강의 충격인성에 미치는 χ의 영향)

  • Kang, C.Y.;Han, H.S.;Lee, S.H.;Han, T.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.74-79
    • /
    • 2012
  • This study has been carried out to investigate the precipitation behavior of ${\chi}$ phase and effect of ${\chi}$ phase precipitation on the impact toughness of 25%Cr-7%Ni-4%Mo super duplex stainless steel. It was proved that the ${\chi}$ phase was a intermetallic compound, which represented the higher chromium and molybdenum concentration than the matrix phases, and also showed the higher molybdenum concentration than the ${\sigma}$ phase. The ${\chi}$ phase was precipitated at the interface between ferrite and austenite or inside the ferrite matrix in the early stage of aging. The number of ${\chi}$ phase precipitates increased with increasing aging time, however, after showing the maximum value, the number was decreased due to the gradual transformation of ${\chi}$ phase into ${\sigma}$-phase. Aging ferrite phase was decomposed by the $r^2$ phase and ${\sigma}$-phase. Impact toughness rapidly decreased with time in the initial stage of aging at ${\chi}$ phase start to precipitate. Thus, the impact toughness was greatly influence for the precipitation of ${\chi}$ phase.

Impact Toughness and Microstructure of the Weld Metal by Tandem Electro-Gas Welded EH40 Steel (EH40 강의 Tandem EGW 용접부 미세조직과 충격인성 특성)

  • Park, Tae Gyu;Kim, Jeon Min;Yoon, Hye Young;Lee, Je Hyun;Chung, Won Jee;Kim, Ho Kyeong
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.1021-1027
    • /
    • 2010
  • The charpy impact property was lower at the surface and middle regions than that at the root region in metal welded by Tandem EGW of 82 mm thick EH40-TM steel plates. Temperature distribution in the weld sample and the heating/cooling temperature throughout the various regions in the weld metal were estimated by the commercial weld simulation program SYSWELD. The microstructure of the weld metal consisted of acicular ferrite and grain boundary ferrite. Grain boundary ferrite in the acicular ferrite matrix was found more in the surface and middle regions than in the root region, and the acicular ferrite was also coarser in the surface and middle regions where the impact toughness was lower and the input temperature was higher. Our results indicated that the impact toughness property was related to the microstructure morphology, the distribution of grain boundary ferrite, and the acicular ferrite.

Applicability of Ferro-nickel Slag Sand for Dry Mortar in Floor (페로니켈슬래그 잔골재의 바닥용 건조모르타르 적용성 평가)

  • Cho, Bong-Suk;Kim, Won-Ki;Hwang, Yin-Seong;Koo, Kyung-Mo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2019
  • Fine aggregate made of ferronickel slag(FNS) is similar to natural fine aggregates and is used in concrete structures both domestically and abroad, but its applications and research areas are limited. In this research, in order to expand the availability of FNS and improve the performance of cement mortar products, the applicability of FNS on dry mortar for floor was examined. Experimental results show that FNS improves flow of cement mortar because it has low absorption rate, spherical shape, and glassy surface. Also, the high stiffness of the FNS aggregate itself is considered to contribute to the improvement of cement mortar quality such as crack reduction by improving the compressive strength and shrinkage reducing. In addition, when FNS fine aggregate is applied, it was possible to secure the impact sound insulation performance equal to or higher than that of mortar using natural fine aggregate.

Effect of Austenitizing Temperature on Secondary Hardening and Impact Toughness in P/M High Speed Vanadium Steel (바나듐 분말 고속도공구강의 이차경화 및 충격인성에 미치는 오스테니타이징 온도의 영향)

  • Moon, H.K.;Yang, H.R.;Cho, K.S.;Lee, K.B.;Kwon, H.
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.477-481
    • /
    • 2008
  • The secondary hardening and fracture behavior in P/M high speed steels bearing V content of 9 to 10 wt% have been investigated in terms of austenitizing temperature and precipitation behavior. Austenitizing was conducted at 1,100 and $1,175^{\circ}C$ of relatively low and high temperatures. Coarse primary carbides retained after austenitization were mainly V-rich MC type. They give a significant influence on hardeness and toughness, as well as wear resistance. Tempering was performed in the range of $500{\sim}600^{\circ}C$. The peak hardness resulting from the precipitation of the fine MC secondary carbides was observed near 520, irrespective of austenitizing temperature. Aging acceleration(or deceleration) did not occur with increasing austenitizing temperature because it mainly influences contents of V and C of matrix through the dissloution of coarse primary MC containing lots of V and C. The precipitation of secondary MC carbides, which also contain V and C, did not change the aging kinetics itself. In the 10V alloy containing much higher C content, the impact toughness was lower than 9V alloy, because of the larger amount of primary carbide and high hardness.

Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels (API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향)

  • Shin, Sang Yong;Oh, Kyoungsik;Kang, Ki Bong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.

A Characteristics of Crack Behavior on Graphite (그라파이트 재료의 고온 크랙특성 평가)

  • Koo, Song-Hoe;Lee, Young-Shin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.417-420
    • /
    • 2009
  • The purpose of the present study is to evaluate high temperature fracture toughness through the experimental and analytical method. The analysis method is proposed to simulate the fracture toughness of high temperatures. Load-COD curves of compact test specimen acquired by finite element method analysis using hypo elastic model are simulated to determine the crack initiation load on high temperatures. The results of experimental work are in accord with analysis in thermal shock test.

  • PDF

Analysis of Likelihood of Failure for the Brittle Fracture through Quantitative Risk Based Inspection using API-581 (API-581에 의한 정량적 위험기반검사에서 취성파괴에 의한 사고발생 가능성 해석)

  • Kim Tae-Ok;Lee Hern-Chang;Jang Seo-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.1 s.30
    • /
    • pp.1-6
    • /
    • 2006
  • To use pressurized facilities safely and effectively, a likelihood of failure (LOF) for the brittle fracture was analyzed quantitatively through the risk based inspection using API-581 BRD. We found that for the case of the low temperature/low toughness and the temper embrittlement, the technical module subfactor (TMSF) showed high value for the A impact curve, low temperature, and the no post weld heat treatment. But the risk didn't significantly change at the $855^{\circ}F$ embrittlement, and the LOF far the sigma phase embrittlement showed high value at low temperature of the high sigma.

  • PDF

Prediction of fracture toughness for turbine rotor steels from their mechanical test results (터어빈 로우터용 강에 대한 기계적 성질로부터 파괴인성치$K_IC$예측에 관한 연구)

  • 이학문;정순호;장윤석;이치우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.717-724
    • /
    • 1987
  • Mechanical properties tests and fracture toughness tests of turbine rotors were performed in the wide range of temperatures, -150.deg.C-+150.deg.C, and fracture toughness values from above tests were compared with the estimated values from mechanical properties at lower and upper shelf temperatures and FATT. The relations between mechanical properties and $K_{IC}$ properties proposed by Rolfe and Begley were reviewed and confirmed through these experimental results. On the fracture surfaces of some specimens which were satisfied with the Ikeda's $K_{IC}$ criterion micro dimple zone was detected at the rear of fatigue crack zone and it was confirmed that these specimens were not satisfied with the thickness requirement of ASTM E 399.E 399.

A Study on the Impact Fracture Toughness of Epoxy Matrix Composites (에폭시기지 복합재료의 충격파괴인성에 관한 연구)

  • Kim, Jae-Dong;Jeon, Jin-Tak;Koh, Sung-Wi
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.9 no.2
    • /
    • pp.188-197
    • /
    • 1997
  • The fracture toughness of three different kinds of epoxy-matrix composites containing the same volume fraction of reinforcement and the variation of fracture toughness of glass-carbon fiber/epoxy hybrid composites due to the change of test temperature and different glass fiber content were investigated in this study. Glass fiber/epoxy composite provided much higher fracture toughness than that of other composites because of the high strain at failure of glass fiber. Particularly the carbon fiber/epoxy composite exhibited the low fracture toughness caused by the low strain energy absorbing capacity of carbon fiber. And it was found that the strain at failure of reinforcement and interfacial delamination absorbing a significant amount of impact energy played an important role to increase fracture toughness of composites. The fracture toughness of the glass-carbon fiber hybrid composites increased with increasing the glass fiber content and decreased with raising the test temperature. The residual stress arising from the different thermal expansion between the matrix and reinforcement influenced the fracture toughness of composites.

  • PDF

Effects of M-A Constituents on Toughness in the ICCG HAZ of SA508-cl.3 Pressure Vessel Steel (SA508-cl.3강의 ICCG HAZ의 인성에 미치는 M-A Constituentsm의 영향)

  • 권기선;김주학;홍준화;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.55-65
    • /
    • 1999
  • Metallurgical factors influencing toughness of the Intercritically Reheated Coarse-Grained Heat Affected Zone (ICCG HAZ) of multiple welded SA508-cl.3 Reactor Pressure Vessel Steel were evaluated. The recrystallized austenite formed along the prior austenite grain boundaries and late interfaced on heating to the intercritical range was transformed to bainite and/or martensite during cooling. The newly formed martensite always included some retained austenite(M-A constituents). The characteristics(amount, hardness, density, and size) of M-A constituents were found to be strongly associated with both peak temperature and cooling time(△t8/5(2)) of last pass. Toughness in the ICCG HAZ was deteriorated with increasing amount of M-A constituents which was increased with increasing the last peak temperature within the intercritical temperature range. Meanwhile, for the same intercritical peak temperature, toughness was decreased with increasing cooling time. When cooling time was short, the dominant factor influencing toughness of the ICCG HAZ was amount of M-A constituents. However, when cooling time was lengthened, the hardness difference between M-A constituents and softened matrix(tempered martensite) was found to be the dominant factor.

  • PDF