• Title/Summary/Keyword: 춤대형

Search Result 9, Processing Time 0.017 seconds

Flexural Capacity of the Encased(Slim Floor) Composite Beam with Deep Deck Plate (매입형(슬림플로어) 합성보의 휨성능 평가 -춤이 깊은 데크플레이트와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.235-245
    • /
    • 2004
  • The advantages of composite construction are now well understood in terms of structural economy, good performance in service, and ease of construction. However, these conventional composite construction systems have some problems in application to steel framed buildings due to their large depth. So, in this study we executed an experimental test with the "Slim Floor"system which could reduce the overall depth of composite beam. Slim Floor system is a method of steel frame multi-story building construction in which the structural depth of each floor is minimized by incorporating the steel floor beams within the depth of the concrete floor slab. Presented herein is an experimental study that focuses on the flexural behaviour of the partially connected slim floor system with asymmetric steel beams encased in composite concrete slabs. Eight full-scale specimens were constructed and tested in this study with different steel beam height, slab width, with or without shear connection and concrete topping thickness. Observations from experiments indicated that the degree of shear connection without additional shear connection was $0.53{\sim}0.95$ times that of the full shear connection due to inherent mechnical and chemical bond stress.

An Essay on the Change of Jinju Sword Dance after being designated as an Important Intangible Cultural Asset (<진주검무> 중요무형문화재 지정 이후의 변화에 관한 소고)

  • Lee, Jong Sook
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.1
    • /
    • pp.4-21
    • /
    • 2016
  • The purpose of this study is to investigate changes of Jinju Sword Dance, characteristics of the changes, and the current condition of its preservation and succession after the designation as the important intangible cultural property no. 12 in January 16th, 1967. In other words, this study understands the situation which has established the present state of after changes over generations. As of now. the year of 2015, the 3 generation holders have been approved since 1967. In 1967, 8 members of $1^{st}$ generation holders were selected from gisaengs of Gwonbeon. However, the succession training was incomplete due to conflicts among the holders, the deaths of some holders, and economic activities of the individuals. As the need of a pivot for succession training and activities was rising, Seong, Gye-Ok was additionally approved as the $2^{nd}$ generation holder on June $21^{st}$, 1978. Seong, Gye-Ok who had never been a gisaeng had dramatically changed with a lot of new attempts. After the death of Seong, Gye-Ok in 2009, Kim, Tae-Yeon and Yu, Yeong-Hee were approved as the $3^{rd}$ generation holders in February, 2010. Based on the resources including the "Cultural Research Reports of Important Intangible Cultural Properties" in 1966 and videos up to 2014, the changes of the dance and surroundings are as follow. 1. The formation of musical accompaniment has been changed during the 3 generations. In the video of the $1^{st}$ generation(in 1970), the performance lasted about 15 minutes, whereas the performance lasted 25 minutes in the video of the $2^{nd}$ generation. Yumbuldoduri rhythm was considered as Ginyumbul(Sangryeongsan) and played more slowly. The original dance requiring only 15 rhythms was extended to 39 rhythms to provide longer performance time. In the $3^{rd}$ generation, the dance recovered 15 rhythms using the term Ginyumbul. The facts that Yumbul was played for 3 minutes in the $1^{st}$ generation but for 5 minutes in the 3rd generation shows that there was tendency pursuing the slowness from the $2^{nd}$ generation. 2. For the composition of the Dance, the performance included additional 20 rhythms of Ginyumbul and Ah(亞)-shaped formation from the $2^{nd}$ generation. From the $3^{rd}$ generation, the performance excluded the formation which had no traditional base. For the movement of the Dance, the bridge poses of Ggakjittegi and Bangsukdoli have been visibly inflexible. Also, the extention of time value in 1 beat led the Dance less vibrant. 3. At the designation as an important intangible cultural property (in 1967), the swords with rotatable necks were used, whereas the dancers had been using the swords with non-rotatable necks since late 1970s when the $2^{nd}$ generation holder began to used them. The swords in the "Research Reports" (in 1966) was pointy and semilunar, whereas the straight swords are being used currently. The use of the straight swords can be confirmed from the videos after 1970. 4. There is no change in wearing Jeonlib, Jeonbok, and Hansam, whereas the arrangement of Saekdong of Hansam was different from the arrangement shown in the "Research Reports". Also, dancers were considered to begin wearing the navy skirts when the swords with non-rotatable necks began to be used. Those results showed that has been actively changed for 50 years after the designation. The $2^{nd}$ generation holder, Seong, Gye-Ok, was the pivot of the changes. However, , which was already designated as an important intangible cultural property, is considered to be only a victim of the change experiment from the project to restore Gyobang culture in Jinju, and it is a priority to conduct studies with historical legitimacy. First of all, the slowing beat should be emphasized as the main fact to reduce both the liveliness and dynamic beauty of the Dance.

Flexural Capacity of Encased Composite Beam with Hollow Core PC Slabs (매입형 합성보의 휨 성능 평가 -속 빈 프리캐스트 콘크리트 슬래브와 비대칭 H형강 철골보-)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.587-598
    • /
    • 2004
  • In this study, an experiment was conducted on the Slim Floor system, using a hollow core PC slab, which could reduce the over-all depth of a composite beam. The Slim Floor system is a method used in steel frame multi-story building construction, in which the structural depth of each floor is minimized after incorporating the steel floor beams within the depth of the concrete floor slab. This experimental study focused on the flexural behavior of the partially connected Slim Floor system with asymmetric steel beams encased in hollow core PC slabs. Ten full-scale specimens were constructed and tested in this study, with different steel beam heights, hollow core PC slabs, slab widths, and PC slab bearings. Observations made in line with the experiments indicated that the degree of shear connection without additional shear connection was 0.48-0.98 times more than that of the full shear connection, due to inherent mechanical and chemical bond stress.

Flexural Capacity of the Profiled Steel Composite Beams with Truss Deck Plate (트러스 데크를 사용한 강판성형 합성보의 휨성능 평가)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong;Jung, Sang Min;Kang, Suk Kuy
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.4
    • /
    • pp.413-423
    • /
    • 2007
  • Slimfloor composite-beam systems could considerably reduce the story height of a building if the steel beam would be installed deep into the concrete floor slab. However, as the depth of the steel beam's installation is limited, it cannot cope with the various demands of building systems. To address this problem, a profiled steel beam section that can control the depth of the steel beam's and slabs' installation was developed in this study. Presented herein are the results of an experiment that was conducted focusing on the flexural behavior of the partially connected composite beams with profiled steel beams encased in composite concrete slabs. Five full-scale specimens with different slab types, with or without shear connection and reinforcement bars, were constructed and tested in this study. As a result, the shear bond stress without an additional shear connection was found to be $0.20{\sim}0.76N/mm^2$due to the inherent mechanical and chemical bond stress.

Experimental Evaluation of Flexural Performance Evaluation of Tapered H-Section Beams with Slender Web (춤이 큰 웨브 변단면 H형 보의 휨내력에 대한 실험적 평가)

  • Shim, Hyun Ju;Lee, Seong Hui;Kim, Jin Ho;Lee, Eun Taik;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.483-492
    • /
    • 2007
  • Pre-Engineering Building (PEB) system is one of the most economical structural systems. Tapered members can resist a maximum stress at a single location, whereas stresses of the rest of the members are considerably low. This results in appreciable savings both in terms of materials and construction costs. However, it was appreciated that special consideration would be required for certain aspects of this structural form. In particular, because of their slenderness, webs would buckle laterally and torsionally under the combined action of excessive axial, bending and shear forces. In this study, a total of four large-scale rafters with simple ends were tested. The main parameters were the width-thickness ratio of the web, the stiffener, and the flange brace. The purpose of this experiment is to evaluate the structural stability and to offer back-data on PEB design.

Seismic Performance Evaluation of Concrete-filled U-shaped Mega Composite Beams (콘크리트 채움 U형 메가 합성보의 내진성능 평가)

  • Lee, Cheol Ho;Ahn, Jae Kwon;Kim, Dae Kyung;Park, Ji-Hun;Lee, Seung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.111-122
    • /
    • 2017
  • In this paper, the applicability of a 1900mm-deep concrete-filled U-shaped composite beam to composite ordinary moment frames (C-OMFs) was investigated based on existing test results from smaller-sized specimens and supplemental numerical studies since full-scale seismic testing of such a huge sized beam is practically impossible. The key issue was the web local buckling of concrete-filled U section under negative bending. Based on 13 existing test results compiled, the relationship between web slenderness and story drift capacity was obtained. From this relationship, a 1900mm-deep mega beam, fabricated with 25mm-thick plate was expected to experience the web local buckling at 2% story drift and eventually reach a story drift over 3%, thus much exceeding the requirements of C-OMFs. The limiting width to thickness ratio according to the 2010 AISC Specification was shown to be conservative for U section webs of this study. The test-validated supplemental nonlinear finite element analysis was also conducted to further investigate the effects of the horizontal stiffeners (used to tie two webs of a U section) on web local buckling and flexural strength. First, it is shown that the nominal plastic moment under negative bending can be developed without using the horizontal stiffeners, although the presence of the stiffeners can delay the occurrence of web local buckling and restrain its propagation. Considering all these, it is concluded that the 1900mm-deep concrete-filled U-shaped composite beam investigated can be conservatively applied to C-OMFs. Finally, some useful recommendations for the arrangement and design of the horizontal stiffeners are also recommended based on the numerical results.

Experimental Study on Structural Behavior of Tapered Member with Non-compact Flange and Web (판폭두께비가 큰 변단면 휨부재의 구조성능에 관한 실험적 연구)

  • Chung, Kyung-Soo;Jeon, Bae-Ho;Park, Man-Woo;Do, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.357-365
    • /
    • 2011
  • The current trends in steel construction intend to use tapered sections to minimize as much as possible the use of excess material. This can be done by choosing the cross-sections to be as economical as possible, leaving the classical approach of using prismatic members. In addition, it is important to predict the buckling behavior of tapered member with large depth-to-thickness ratio in order to prevent the collapse of PEB system subjected to overloads. An experimental investigation of buckling behavior of tapered beam was presented. The primary test parameter was depth-to-thickness ratio and taper ratio. Using initial stiffness and load-carrying capacity proposed by current provision, the simple plastic hinge method using modified Yoda's model and finite element analysis, the prediction of a moment-rotation curve of linearly tapered member was presented. Moreover, comparisons between analytical and experimental data for moment-rotation curves were accomplished.

Flexural Behaviour of Encased Composite Beam with Precast Hollow Core Slabs and Channels (속빈 PC 슬래브와 채널을 사용한 매입형 합성보의 휨 거동)

  • Heo, Byung Wook;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.4
    • /
    • pp.493-504
    • /
    • 2008
  • This paper deals with the experimental analysis of the flexural behaviour of encased composite beams with hollow core slabs and channels. The shear force between steel beams and hollow core slabs are transferred by channels. Three full-scale specimens were constructed and tested with different steel beam heights, which were compared with those of previous studies. Based on observation of the experiments, the encased composite beams exhibited full shear connection behaviour without any other shear connectors due to their inherent mechanical and chemical bond stress. Experimental results show a behaviour similar to steel-concrete composite beams with classical connectors: elastic and yield domains, great ductility, flexural failure mode (plastic hinge), low relative movement at steel-concrete interface and all specimens failed in a very ductile manner. Consequently, this study enables the validation of the proposed connection device under static loading and shows that it meets modern structural requirements.

Experimental Evaluation of the Flexural Behavior of SY Permanent Steel Form for RC Beam and Girder (SY 비탈형 보 거푸집의 휨 거동에 대한 실험적 고찰)

  • Bae, Kyu-Woong;Boo, Yoon-Seob;Shin, Sang-Min
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • Currently, in the domestic construction industry, the free web method has been emerging as a potential solution to the shortage of skilled workers due to the prolonged COVID-19 crisis, as it helps in securing economic feasibility through shortening the construction period and reducing labor costs. To consider one part of the construction method, in this study, the bending behavior according to the load was evaluated for the SY slope-type beam formwork, which was manufactured at a factory, assembled with rebar, brought into the site, and then poured into the site. For the SY Beam standard cross-sectional shape, a cross-sectional dimensional width of 400mm and depth 600mm determined through structural modeling using the MIDAS GEN program were applied. A total of 6 specimens were made with a member length of 5,000mm, 5 specimens and one RC specimen in the comparison group were manufactured in real-size format using the thickness of the steel plate(0.8, 1.0, 1.2mm) as a variable, and bending experiments were performed. In the bending test, the steel plate deck showed high initial stiffness and maximum strength as it yielded, which showed that it sufficiently contributed to the flexural strength. It is judged that additional analysis and experimental studies for 1.05, 1.1, and 1.15mm are needed to derive the appropriate steel plate thickness and the method for calculating the tensile force contribution of the steel plate to secure the manufacturing, construction and economic feasibility of SY Beam in the future.