• Title/Summary/Keyword: 출발지 기반 알고리즘

Search Result 37, Processing Time 0.023 seconds

Finding the One-to-One Optimum Path Considering User's Route Perception Characteristics of Origin and Destination (Focused on the Origin-Based Formulation and Algorithm) (출발지와 도착지의 경로인지특성을 반영한 One-to-One 최적경로탐색 (출발지기반 수식 및 알고리즘을 중심으로))

  • Shin, Seong-Il;Sohn, Kee-Min;Cho, Chong-Suk;Cho, Tcheol-Woong;Kim, Won-Keun
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.7 s.85
    • /
    • pp.99-110
    • /
    • 2005
  • Total travel cost of route which connects origin with destination (O-D) is consist of the total sum of link travel cost and route perception cost. If the link perception cost is different according to the origin and destination, optimal route search has limitation to reflect the actual condition by route enumeration problem. The purpose of this study is to propose optimal route searching formulation and algorithm which is enable to reflect different link perception cost by each route, not only avoid the enumeration problem between origin and destination. This method defines minimum unit of route as a link and finally compares routes using link unit costs. The proposed method considers the perception travel cost at both origin and destination in optimal route searching process, while conventional models refect the perception cost only at origin. However this two-way searching algorithm is still not able to guarantee optimum solution. To overcome this problem, this study proposed an orign based optimal route searching method which was developed based on destination based optimal perception route tree. This study investigates whether proposed numerical formulas and algorithms are able to reflect route perception behavior reflected the feature of origin and destination in a real traffic network by the example research including the diversity of route information for the surrounding area and the perception cost for the road hierarchy.

Effective Route Finding for Alternative Paths using Genetic Algorithm (유전알고리즘을 이용한 효율적인 대체경로탐색)

  • 서기성
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1998.03a
    • /
    • pp.65-69
    • /
    • 1998
  • 차량주행안내 시스템에서 경로 안내 기능은 사용자에게 출발지와 목적지간의 최단의 경로를 찾아 주는 역할을 수행한다. 그런데 최단경로를 찾는 문제도 중요하지만, 다음과 같이 최단 경로 이외에 대체경로가 필요한 경우가 자주 발생한다. 첫째, 목적지나 출발지가 유사한 차량에 대해서 복수개의 경로를 제시함으로써, 교통량을 분산시킬수 있어, 전체 도로망의 효율을 높일 수 있다. 둘째, 운전자의 선호도가 각기 다르기 때문에 이를 만족시키기 위해서는 복수개의 경로 제시가 필요하다. 본 연구에서는 대체경로의 적합성을 평가할수 있는 지표와 유전 알고리즘 기반의 효율적인 대체경로를 탐색 기법을 제시한다.

  • PDF

Efficient Path Search using A* and Genetic Algorithm (A*와 유전자 알고리즘을 이용한 효율적인 경로 탐색)

  • Kang, Ho Kyun;Choi, Jae Hyuk;Kim, Kwang Beak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.71-73
    • /
    • 2017
  • 논문에서는 최적화 문제를 해결하는 기법의 하나인 $A^*$와 유전자 알고리즘을 이용하여 모든 노드를 탐색하여 최적의 경로를 도출하는 최적화 경로 탐색 방법을 제안한다. 경로를 도출하기 위해 $A^*$ 알고리즘을 적용하여 출발지 노드로부터 중간 경로 노드까지의 거리를 측정하여 개체를 생성한다. 출력 노드들을 도출하기 위해 생성된 개체를 적합도 함수에 적용하여 적합도를 계산한다. 계산된 적합도 값에 따라 교배를 할 노드 및 교배 지점을 선택한다. 선택된 노드와 교배 지점을 이용하여 개체들을 교배한다. 교배를 통해 새로운 개체를 생성한다. 새로운 개체가 적합도 조건에 만족하면 출력 노드로 도출하고, 다음 출력 노드를 도출하기 위한 출발지 노드로 선택한다. 이러한 과정을 반복하여 모든 출력 노드를 도출한다. 제안된 방법을 경로 탐색 문제를 대상으로 실험한 결과, $A^*$ 알고리즘만을 이용한 경우보다 제안된 방법이 경로 탐색 문제에 있어서 최적화된 거리를 기반으로 경로를 탐색하는 것을 확인하였다.

  • PDF

An One-to-One Shortest Path Algorithm using Two-Queue (Two-Queue를 이용한 One-to-One 최단경로 알고리즘)

  • 심충섭;김진석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.613-615
    • /
    • 2001
  • 최단경로 탐색에 있어서 출발지와 목적지 사이의 최단경로를 계산하는데 있어서 Label-Setting 알고리즘이 Label-Correcting 알고리즘보다 낫다고 믿어왔다. 하지만 특수한 경우에는 Label-Correcting 알고리즘이 GIS기반의 도로에서 더 좋은 결과를 보인다고 Benjamin의 논문에서 밝혔다[1]. 본 논문에서는 Label-Correcting 알고리즘인 Pallottino의 Graph Growth 알고리즘을 수정하여 One-to-One 최단경로탐색에 적합한 알고리즘을 제안한다.

  • PDF

A Link-Based Label Correcting Multi-Objective Shortest Paths Algorithm in Multi-Modal Transit Networks (복합대중교통망의 링크표지갱신 다목적 경로탐색)

  • Lee, Mee-Young;Kim, Hyung-Chul;Park, Dong-Joo;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.127-135
    • /
    • 2008
  • Generally, optimum shortest path algorithms adopt single attribute objective among several attributes such as travel time, travel cost, travel fare and travel distance. On the other hand, multi-objective shortest path algorithms find the shortest paths in consideration with multi-objectives. Up to recently, the most of all researches about multi-objective shortest paths are proceeded only in single transportation mode networks. Although, there are some papers about multi-objective shortest paths with multi-modal transportation networks, they did not consider transfer problems in the optimal solution level. In particular, dynamic programming method was not dealt in multi-objective shortest path problems in multi-modal transportation networks. In this study, we propose a multi-objective shortest path algorithm including dynamic programming in order to find optimal solution in multi-modal transportation networks. That algorithm is based on two-objective node-based label correcting algorithm proposed by Skriver and Andersen in 2000 and transfer can be reflected without network expansion in this paper. In addition, we use non-dominated paths and tree sets as labels in order to improve effectiveness of searching non-dominated paths. We also classifies path finding attributes into transfer and link travel attribute in limited transit networks. Lastly, the calculation process of proposed algorithm is checked by computer programming in a small-scaled multi-modal transportation network.

Analysis of Convergence Level and Exit Criteria on Traffic Assignment Algorithms (통행배정모형의 수렴성 판단 및 종료기준 설정)

  • Kim, Joo-Young;Kim, Jae-Young;Park, Sang-Jun;Lee, Seung-Jae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.14 no.1
    • /
    • pp.31-45
    • /
    • 2015
  • Existing link-based Frank-Wolfe algorithm has been widely used, thanks to its ease of simulation and stable results; however, it comes with low convergence issue towards near the optimum value. Such issue was not considered as a major drawback in the past. However, in the present, some arguments have occurred over the method's stability, analysis time, and other limits as the size and details of the fundamental data for traffic analysis have vastly improved. Therefore, this paper compared the theoretical attributes and the pros and cons between the Frank-Wolfe algorithm and the Origin-based algorithm and Path-based algorithm newly being developed. As a result of this paper, there is possibility that a problem of stability may arise depending on the convergence and exit criteria. Thus, In practice, this effort to derive the appropriate level of convergence is required to secure and stable results.

Combining A* and Genetic Algorithm for Efficient Path Search (효율적인 경로 탐색을 위한 A*와 유전자 알고리즘의 결합)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.7
    • /
    • pp.943-948
    • /
    • 2018
  • In this paper, we propose a hybrid approach of combining $A^*$ and Genetic algorithm in the path search problem. In $A^*$, the cost from a start node to the intermediate node is optimized in principle but the path from that intermediate node to the goal node is generated and tested based on the cumulated cost and the next node in a priority queue is chosen to be tested. In that process, we adopt the genetic algorithm principle in that the group of nodes to generate the next node from an intermediate node is tested by its fitness function. Top two nodes are selected to use crossover or mutation operation to generate the next generation. If generated nodes are qualified, those nodes are inserted to the priority queue. The proposed method is compared with the original sequential selection and the random selection of the next searching path in $A^*$ algorithm and the result verifies the superiority of the proposed method.

Fuzzy Theory and Bayesian Update-Based Traffic Prediction and Optimal Path Planning for Car Navigation System using Historical Driving Information (퍼지이론과 베이지안 갱신 기반의 과거 주행정보를 이용한 차량항법 장치의 교통상황 예측과 최적경로 계획)

  • Jung, Sang-Jun;Heo, Yong-Kwan;Jo, Han-Moo;Kim, Jong-Jin;Choi, Sul-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.159-167
    • /
    • 2009
  • The vehicles play a significant role in modern people's life as economy grows. The development of car navigation system(CNS) provides various convenience because it shows the driver where they are and how to get to the destination from the point of source. However, the existing map-based CNS does not consider any environments such as traffic congestion. Given the same starting point and destination, the system always provides the same route and the required time. This paper proposes a path planning method with traffic prediction by applying historical driving information to the Fuzzy theory and Bayesian update. Fuzzy theory classifies the historical driving information into groups of leaving time and speed rate, and the traffic condition of each time zone is calculated by Bayesian update. An ellipse area including starting and destination points is restricted in order to reduce the calculation time. The accuracy and practicality of the proposed scheme are verified by several experiments and comparisons with real navigation.

A Deterministic User Optimal Traffic Assignment Model with Route Perception Characteristics of Origins and Destinations for Advanced Traveler Information System (ATIS 체계 구축을 위한 출발지와 도착지의 경로 인지 특성 반영 확정적 사용자 최적통행배정 모형)

  • Shin, Seong-Il;Sohn, Kee-Min;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 2008
  • User travel behavior is based on the existence of complete traffic information in deterministic user optimal principle by Wardrop(1952). According to deterministic user optimal principle, users choose the optimal route from origin to destination and they change their routes arbitrarily in order to minimize travel cost. In this principle, users only consider travel time as a factor to take their routes. However, user behavior is not determined by only travel time in actuality. Namely, the models that reflect only travel time as a route choice factor could give irrational travel behavior results. Therefore, the model is necessary that considers various factors including travel time, transportation networks structure and traffic information. In this research, more realistic deterministic optimal traffic assignment model is proposed in the way of route recognizance behavior. This model assumes that when users decide their routes, they consider many factors such as travel time, road condition and traffic information. In addition, route recognizance attributes is reflected in this suggested model by forward searching method and backward searching method with numerical formulas and algorithms.

  • PDF

A New Genetic Algorithm for Shortest Path Routing Problem (최단 경로 라우팅을 위한 새로운 유전자 알고리즘)

  • ;R.S. Ramakrishna
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.12C
    • /
    • pp.1215-1227
    • /
    • 2002
  • This paper presents a genetic algorithmic approach to shortest path (SP) routing problem. Variable-length chromosomes (strings) and their genes (parameters) have been used for encoding the problem. The crossover operation that exchanges partial chromosomes (partial-routes) at positionally independent crossing sites and the mutation operation maintain the genetic diversity of the population. The proposed algorithm can cure all the infeasible chromosomes with a simple repair function. Crossover and mutation together provide a search capability that results in improved quality of solution and enhanced rate of convergence. Computer simulations show that the proposed algorithm exhibits a much better quality of solution (route optimality) and a much higher rate of convergence than other algorithms. The results are relatively independent of problem types (network sizes and topologies) for almost all source-destination pairs.