• Title/Summary/Keyword: 축 압축 변형

Search Result 158, Processing Time 0.024 seconds

Mechanical Properties of an ECC(Engineered Cementitious Composite) Designed Based on Micromechanical Principle (마이크로역학에 의하여 설계된 ECC (Engineered Cementitious Composite)의 역학적 특성)

  • Kim Yun-Yong;Kim Jeong-Su;Kim Hee-Sin;Ha Gee-Joo;Kim Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.709-716
    • /
    • 2005
  • The objective of this study is to develop a high ductile fiber reinforced mortar, ECC(Engineered Cementitious Composite) with using raw material commercially available in Korea. A single fiber pullout test and a wedge splitting test were employed to measure the bond properties in a matrix and the fracture toughness of mortar matrix respectively, which are used for designing mix proportion suitable for achieving strain-hardening behavior at a composite level. Test results showed that the properties tended to increase with decreasing water-cement ratio. A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially peformed to properly select water-cement ratio, and then basic mixture proportion range was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests were performed on the composites with W/C's of 47.5% and 60% at 28 days that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by a maximum strain capacity of 2.2%, which is around 100 times the strain capacity of normal concrete. Also, compressive tests were performed to examine high ductile fiber reinforced mortar under the compression. The test results showed that the measured value of compressive strength was from 26MPa to 34 MPa which comes under the strength of normal concrete at 28 days.

Numerical Analysis of Stress-Strain Behavior of Geofoam (지오폼의 응력-변형률 거동의 수치적 해석)

  • Chun, Byung-Sik;Lim, Hae-Sik;Ahn, Tae-Bong;Lee, Cheol-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.3
    • /
    • pp.77-88
    • /
    • 2000
  • 연약지반상에 하중 경감을 목적으로 발포성 폴리스티렌(Expanded Polystyrene)을 사용하는 사례가 최근 꾸준히 증가하고 있다. 공법의 요점은 연약지반상에 축조되는 상부구조물에 의한 응력증가를 감소시켜서 결국에는 침하를 방지하기 위한 것이다. 이것을 지오폼(geofoam)이라고 하는데, 지오폼은 교대나 옹벽의 뒷채움재로 사용할 경우 횡토압을 감소시키기 때문에 옹벽이나 교대의 뒷채움재료로 사용하기도 한다. 이와 같이 그 사용이 꾸준히 증가하고 있지만 뒷채움이나 연악지반상에 사용할 때 지오폼의 거동을 예측하는 적절한 수치모델이 아직은 개발되자 않았다. 본 연구에서는 지오폼의 응력-변형 특성을 연구하고 그 탄소성 예측모델을 제시하였다. 이를 위하여 삼축압축시험을 실시하였으며 구속응력과 지오폼의 밀도를 다양하게 변화시켜 그 응력-변형특성을 조사하고 회귀분석을 통하여 비선형 구성모델을 제시하였다. 그 결과 지오폼은 탄성 선형모델보다 탄소성모델 특성에 더 가까운 것을 알 수 있었으며 체적변화율과 축방향 변형률에는 특별한 상관 관계가 있음을 알 수 있었다.

  • PDF

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear (순수전단이 작용하는 RC막판넬의 전단변형률 증폭)

  • Jeong, Je Pyong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.101-110
    • /
    • 2015
  • Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

Empirical Prediction for the Compressive Strength and Strain of Concrete Confined with FRP Wrap (FRP로 보강된 콘크리트의 강도 및 변형률 예측)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.253-263
    • /
    • 2007
  • Previous researches showed that confined concrete with Fiber-Reinforced Plastic (FRP) sheets significantly improves the strength and ductility of concrete compared with unconfined concrete. However, the retrofit design of concrete with FRP materials requires an accurate estimate of the performance enhancement due to the confinement mechanism. The object of this research is to predict the compressive strength and strain of concrete confined with FRP wraps. For the purpose of this research, 102 test specimens were fabricated and loaded statically under uniaxial compression. Axial load, axial and lateral strains were investigated to predict the ultimate stress and strain. Also, to achieve reliability of proposed strength and strain models for FRP-confined concrete, another series of uniaxial compression test results were used. This paper presents strength and strain models for FRP-confined concrete. The proposed models to estimate the ultimate stresses and failure strains produce satisfactory predictions as compared to current design equations. In conclusion, it is proposed that the modified stress-strain model of concrete cylinders could be effectively used for the repair and retrofit of concrete columns.

A Study on the Undrained Deformation Characteristics of Remoulded Marine Clay (재성형(再成形)한 해성점토(海成粘土)의 비배수(非排水) 변형특성(變形特性)에 관(關)한 연구(硏究))

  • Yoon, Hyun Jung;Kang, Yea Mook;Cho, Seong Seup
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.309-323
    • /
    • 1985
  • The Paper describes the observed behaviour in the undrained triaxial condition of marine clays remoulded at various different levels of factors, to find out the effects of restricted factors on the stress-strain characteristics. The conventional triaxial compression tests $({\sigma}1>{\sigma}2={\sigma}3)$ were carried out on the 50mm in diameter and 100mm long cylindrical specimens of Gun-san bay mud under controlled various moisture content, density, axial strain rate and passing on No. 200 sieve. Significant conclusions from this study are; 1. The compressible deviator stress at failure of pure marine clay was observed to increase with the decrease of moulding moisture content. 2. The compressible deviator stress at failure increased with the increasing of moulding dry density. 3. The interaction between moisture content and density on the stress-strain characteristics of marine clay was remarkedly significant, as the result of factorial experimental method. 4. The effect of axial strain rate on stress-strain behaviour was unsignificant in marine clay and but the secant moduli could be pronounced on a slight decreasing with increase of the strain rate. 5. With the increasing of the passing on No. 200 sieve, the deviator stress increased regularly. 6. The multiple regression equation could be modeled for the prediction of stress or strain and the comparison with experimental results relatively proved the accuracy.

  • PDF

Horizontal Strain of the Crust in Korea for the Past 80 Years from Geodetic Observations (측지측량 결과로부터 조사된 과거 80년간 한국에서 지각의 수평변형)

  • 최재화
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.49-61
    • /
    • 1997
  • 본 연구에서는 한국에서 구삼각강(1910-1915)과 정밀1차측지망(1975-1994)을 사용하여 지각변동량을 계산하고, 지체구조의 일반적인 변형패턴을 기하학적으로 조사하였다. 본 연구에서는 변형량을 계산하기 위하여 2차원의 무한소 변형모델을 설정하였으며, 수평변형량은 구좌표와 정밀1차측지망의 정밀동시강조정을 자유강조정법에 의하여 최초로 실시하여 일괄성있는 신좌표를 사용하여 계산된 측지선의 변화량으로 추정하였다. 변형설계결과로부터 1910년부터 1994년까지 누적된 변형량은 평균(1.07$\pm$0.5)$\times$10-5이고, 이로부터 년변형속도는 (0.13$\pm$0.063)$\mu$/yr 임을 알 수 있었으며, 변형의 경향을 보면 변형량이 10$\mu$ 보다 큰 값이 한반도의 동해안 지역에 분포하고 있으며, 서부쪽에는 10$\mu$이하의 값이 분포하고 있는 것으로 나타나 한반도의 동해안에서 지진의 발생빈도가 높은 것을 고려한다면 본 연구로부터 계산된 결과는 장래의 연구를 위해 중요한 데이터가 될 것이다. 본 연구에서 얻은 주변형축의 방향은 전국적으로 $77.6^{\circ}$$\pm$$13.5^{\circ}$방향임을 보여주고 있어 한반도의 지각은 ENE~WSW방향으로 압축상태에 있음을 알 수 있었으며, 이 결과는 지질학자나 지진학자들의 연구로부터 얻은 결과와 P-축의 방향이 일치하고 있고, 최대전단변형 이론과 일치하고 있는 것으로 나타났다.

  • PDF

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

An Experimental Study on the Determination of Damage Thresholds in Rock at Different Stress Levels (응력수준에 따른 암석의 손상기준 결정에 관한 실험적 연구)

  • Chang Soo-Ho;Lee Chung-In
    • Explosives and Blasting
    • /
    • v.23 no.4
    • /
    • pp.31-44
    • /
    • 2005
  • In highly stressed conditions, the excavation damage zone induced by stress redistribution and disturbance must be evaluated after tunnel excavation. Therefore, the investigation of stress-induced deformation and fracture in rock is indispensable. In this study, fracture and damage mechanisms of rock induced by the accumulation of microcracks were investigated by the moving point regression technique as well as acoustic emission measured during uniaxial compression tests. Especially, the modified procedures to determine damage thresholds more systematically were newly proposed, and successfully applied to rock. From experiments, crack initiation and track damage stress levels were estimated to be $33{\~}36\%$ and $84{\~}89\%$ of uniaxial compressive strength respectively, for both of Hwangdeung granite and Yeosan marble. However, the normalized crack closure stress level for Yeosan marble was much higher than for Hwangdeung granite. In addition, the largest proportion of total axial strain in Hwangdeung granite was attributable to elastic deformation and initial microcracking. However, the greatest part of axial deformation in Yeosan marble arose from initial crack closure and unstable cracking. Finally, it was seen that unstable cracking after the crack damage stress level played a key part in the lateral deformation in rocks under uniaxial compression.

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.

Development of Stress-Strain Relationship Considering Strength and Age of Concrete (콘크리트의 강도와 재령을 고려한 응력-변형률 관계식의 개발)

  • 오태근;이성태;김진근
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.447-456
    • /
    • 2001
  • Many investigators have tried to represent the nonlinear behavior of stress-strain relationship of concrete using mathematical curves. Most of empirical expressions for stress-strain relationship, however, have focused on old age concrete, and were not able to represent well the behavior of concrete at an early age. Where wide understanding on the behavior of concrete from early age to old age is very important in evaluating the durability and service life of concrete structures. In this paper, effect of 5 different strength levels and ages of from 12 hours to 28 days on compressive stress-strain relationship was observed experimentally and analytically. Tests were carried out on $\phi$100${\times}$200mm cylindrical specimens water-cured at 20${\pm}$3$^{\circ}C$. An analytical expression of stress-stain relationship with strength and age was developed using regression analyses on experimental results. For the verification of the proposed model, the model was compared with present and existing experimental data and some existing models. The analysis shows that the proposed model predicts well experimental data and describes well effect of strength and age on stress-strain relationship.