• Title/Summary/Keyword: 축소 노즐

Search Result 93, Processing Time 0.021 seconds

Development of Bulging Process for Regenerative Cooling Nozzle of Liquid Rocket Thrust Chamber (액체로켓 연소기 재생냉각형 노즐의 벌징 공정 개발)

  • Ryu, Chul-Sung;Choi, Hwan-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • A study has been conducted on the bulging process of regenerative cooling nozzle which is essential for the manufacturing of liquid rocket thrust chamber. Tension tests have been performed for the material to be used for the development of the bulging process and mechanical properties are obtained by the test. Two or three bulging tools were required to complete the bulging process. The necking of the material was a major failure encountered in the bulging process and a research has revealed that grain size of the material has considerable effect on its occurrence. The presently developed bulging process with a controlled grain size material has been successfully applied to the manufacturing of subscale and 30-tonf full scale regeneratively cooled nozzle while demonstrating the applicability and usefulness of the presently developed bulging process.

  • PDF

과냉각수에 분사된 증기제트의 응축특성에 관한 실험

  • Cho, Seok;Kim, Hwan-Yeol;Song, Cheol-Hwa;Bae, Yun-Young;Jeong, Mun-Ki
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.571-576
    • /
    • 1998
  • 고온의 증기가 과냉각 상태의 물과 직접접촉에 의해 발생하는 응축현상(DCC Direct Contact Condensation)을 실험적으로 고찰하였다. 본 연구는 두단계로 나누어 수행하였다. 1단계 연구에서는 간단한 원형관 형태의 수평 노즐을 통하여 증기제트가 대기압 상태의 과냉각수로 분출될 때 증기제트 및 주위의 거동을 측정·분석하였다. 수조의 온도와 증기유량의 변화에 따른 증기제트의 축방향과 반경방향 온도분포와 수조 벽면에서의 동압을 측정하였으며, 고속 비디오 카메라를 사용하여 각각의 경우에 대하여 증기제트의 분출이미지를 촬영하였다. 벽면에서의 동압은 노즐의 분출구직경과 응축수의 온도에 비례하여 증가하였다. 2단계 연구에서는 몇가지 형태의 증기분사기 축소 모형에 대한 응축성능을 비교하였다. 이때에는 수조의 온도상승으로 인해 수조가 가압되는 정도를 알아보기 위해 수조를 밀봉한 상태로 실험을 수행하였다. 실험시 수조의 압력은 시간의 경과에 따라 계속적으로 증가하였으나, 이는 방출된 증기의 불완전한 응축에 의한 것은 아니고 증기의 분출과 응축으로 인한 응축수의 부피팽창과 수조 온도의 상승으로 인한 증기압의 상승 때문인 것으로 판단된다.

  • PDF

Combustion Performance Tests of High Pressure Subscale Liquid Rocket Combustors (고압 축소형 연소기의 연소 성능 시험)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Lim, Byoung-Jik;Ahn, Kyu-Bok;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.128-134
    • /
    • 2007
  • Combustion performance and characteristics of high-pressure subscale liquid rocket combustors were studied experimentally. Four different models of combustor were considered in this paper. The high-pressure subscale combustor is composed of the mixing head, the water cooling cylinder and the nozzle. One model of the combustors employed regenerative cooling combustor in that the kerosene used for the chamber cooling is burned. This combustor was damaged due to a high frequency combustion instability occurred during a firing test. The results of the firing tests, comparison of performance, and characteristics of static and dynamic pressures of the combustors are described.

  • PDF

A Study on the Flow Loss for Sudden Expansion and Contraction Part of Circular Pipe Nozzle (원형단면 노즐의 급확대 축소부를 통한 유동손실에 대한 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • To obtain an exact flow loss in piping systems is very important in the face of efficiency anticipation and work control of plant. The object of this study is to get the flow loss through the experiment for sudden expansion and contraction part of circular pipe nozzle. The experiment in this study is performed after getting the flow loss factor for sudden expansion and contraction through preliminary experiments. It is confirmed that the results of this study agreed with the approximated equation of Ikeda and Matsuo. It is proved that flow loss factor ${\zeta}_3$for sudden expansion and contraction part of circular pipe is dependent on $L/D_1$in these experimental conditions.

  • PDF

Research and Development of KSR-III Apogee Kick Motor (KSR-III Apogee Kick Motor 연구 및 개발)

  • 조인현;오승협;강선일;황종선
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.40-49
    • /
    • 2001
  • The basic research on AKM(Apogee Kick Motor) for space launch vehicle was carried out. AKM which will be used as 3rd stage solid rocket motor in 3-stage Korean Sounding Rocket(III) has been developing. KM is a solid rocket motor using composite propellant based on HTPB and is composed of composite motor case and submerged nozzle. To develop KM rocket motor satisfing a given set of requirement, firstly the full-scale KM with diameter 520mm was designed, then sub-scale motors reduced about 60% were manufactured and tested. Full-scale ground firing test is accomplished two times.

  • PDF

A Numerical Study on Performance Characteristics of a Subscale Diffuser for High-Altitude Simulation (고고도 모사를 위한 축소형 디퓨저의 성능 특성에 대한 수치적 연구)

  • Jeong, Bong-Goo;Yim, Kyung-Jin;Jo, Seong-Hwi;Kim, Hong-Jip;Jeon, Jun-Soo;Ko, Young-Sung;Kim, Seung-Han;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.570-573
    • /
    • 2012
  • Performance characteristics of subscale diffuser for high-altitude simulation have been numerically investigated. The length of diffuser entrance with respect to nozzle exit diameter was changed to 0, 50, 100%, respectively. In addition, flow characteristics have been studied for various length to diameter ratio of secondary throat diffuser. As a result, the shape of plume was contracted for insufficient length of diffuser entrance. Also, if the length to diameter ratio of secondary throat diffuser were less than 7 or 8, mach disk has been formed inside the diffuser.

  • PDF

Experimental Study on the Supersonic Jets at Low Operating Pressure Ratio (낮은 작동 압력비의 초음속 제트에 대한 실험적 연구)

  • Lee, Jae Hyeok;Zhang, Guang;Kim, Tae Ho;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.489-495
    • /
    • 2017
  • An experimental study on supersonic jets produced by supersonic nozzles at low operating pressure ratio is conducted. In the present experiments, particle image velocimetry (PIV) was employed to quantitatively specify the jet flowfield, and a color Schlieren optical method was applied to observe the same jets qualitatively. Convergent-divergent nozzles were used to generate the jet flow with design Mach numbers of 1.5 and 1.8. Nozzle pressure ratios (NPRs) were varied from 4 to 7. A good comparison of the jet size from the Schlieren images with the theoretical values is obtained. The obtained images clearly showed the major features of the under-expanded jet and over-expanded jet.

Analytical Study on the Gas-Solid Suspension Flows through Sonic and Supersonic Nozzles (음속 및 초음속 노즐을 통한 Gas-Solid Suspension 유동에 대한 해석적 연구)

  • Sun, JianGuo;Rajesh, G.;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • A considerable deal of work has been carried out to get an insight into the gas-solid suspension flows and to specify the particle motion and its influence on the gas flow field. In this paper an attempt is made to develop an analytical model to study the effect of nozzle inlet/exit pressure ratio, particle/gas loading and the particle diameter effect on gas-solid suspension flow. The effect of the particle/gas loading on the mass flow, Mach number, thrust coefficient and static pressure variation through the nozzle is analyzed. The results obtained show that the presence of particles seems to reduce the strength of the shock wave. It is also found that smaller the particle diameter is, bigger will be the velocity as bigger particle will have larger slip velocity. The suspension flow of smaller diameter particles has almost same trend as that of single phase flow with ideal gas as working fluid. Depending on the ambient pressure, the thrust coefficient is found to be higher for larger particle/gas loading or back pressure ratio.

Computational and Experimental Investigation of Thermal Flow Field of Micro Turbojet Engine with Various Nozzle Configurations (노즐 형상 변경에 따른 마이크로 터보제트 엔진의 열유동장에 관한 전산해석 및 실험적 연구)

  • Lee, Hyun-Jin;Lee, Ji-Hyun;Myong, Rho-Shin;Kim, Sun-Mi;Choi, Sung-Man;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.150-158
    • /
    • 2018
  • Numerical simulation and experimental study on the thermal flow field of the micro turbojet engine have been carried out for the purpose of developing infrared reduction technology for aircraft. A circular basic nozzle and five rectangular nozzles with different aspect ratio were considered. The conditions for CFD analysis were derived from the analysis of the engine performance. The temperature distribution of the nozzle plume was measured using a temperature sensing system. The thrust of the rectangular nozzle with the aspect ratio 5 was reduced about 1.8% compared to the circular nozzle, and the thrust decreased with increasing the aspect ratio of the nozzle. In the case of thermal flow field, it was observed that, as the aspect ratio increases, the exhaust plume in the experiment was formed wider than in the CFD analysis.

Combustion Tests of Sub-scale Combustor for a Liquid Rocket Engine with Internal Mixing Swirl Injector (내부혼합 동축 와류형 분사기를 장착한 액체로켓엔진용 축소형 연소기의 연소시험)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • The combustion test results of the sub-scale combustor having dual swirl injector with internal mixing for a liquid rocket engine are described. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has an injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors of internal mixing. The combustion tests were successfully performed at design and off-design points without any damages on the injectors. Combustion characteristics velocity of 1756m/s was measured at design point. High frequency combustion instability was not observed but low frequency pulsations occurred at off-design conditions.