• Title/Summary/Keyword: 축방향변형률

Search Result 9, Processing Time 0.025 seconds

Evaluation of Axial Strains of Reinforced Concrete Columns (철근콘크리트 기둥의 축방향 변형률 평가)

  • Lee, Jung-Yoon;Kim, Min-Ok;Kim, Hyung-Beom
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • The longitudinal axial strain in the plastic hinge region of reinforced concrete (RC) columns influences on the structural behavior of RC structures subjected to reversed cyclic loading. This strain decreases the effective compressive strength of concrete and increases the lateral displacements between stories by causing the elongation of member length. This paper investigated the effects of the axial force on the elongation of a RC member by using a sectional analysis of RC members. The analytical and experimental results indicated that the axial force decreased the axial strain in the plastic hinge region of RC columns. In this study, a model was proposed to predict the axial strain of RC columns. The proposed model considering the effects of axial force ratio consisted of three path types ; Path 1-loading region, Path 2-unloading region, and Path 3-reversing cyclic loading region. The axal strains predicted by the proposed model were compared with the test results of RC columns with various axial force ratios, and agreed reasonably with the observed longitudinal strains.

Axial Load Behavior of Concrete Cylinders Confined with Fiber-Sheet and Steel-Plate Composites Plate (FSP) (섬유-강판 복합플레이트로 보강된 콘크리트 압축부재의 압축성능)

  • Cho, Baik-Soon;Choi, Eunsoo;Chung, Young-Soo;Kim, Yeon-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.331-340
    • /
    • 2011
  • The application of newly developed fiber-sheet and steel-plate composite plate (FSP) as a means of improving strength and ductility capacity of concrete cylinders under axial compression load through confinement is investigated experimentally in this study. An experimental investigation involves axial load tests of two types of FSP strengthening material, two anchoring methods, and three concrete strengths. The FSP-confined cylinder tests showed that FSP provided a substantial gain in compressive strength and deformability. The performance of FRP-confined cylinders was influenced by type of the FSP strengthening material, the anchoring method, and concrete compressive strength. The FSP failure strains obtained from FSP-confined cylinder tests were higher than those from FRP-confined cylinder tests. The magnitude of FSP failure strain was related to the FSP composite effectiveness. The effects of FSP confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, radial, and volumetric strains. From the observations obtained in this investigation, it is believed that FSP is one of the best solutions for the confinement of concrete compressive members.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

A Study on the Behavior of Staturated Sandy Soils Under Dynamic Loads using Disturbed State Concept (교란상태개념모델을 이용한 포화사질토의 동적거동에 관한 연구)

  • 정철민;박인준;김수일
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.5
    • /
    • pp.193-201
    • /
    • 2000
  • 교란상태개념(Disturbed State Concept;DSA)모델릉 이용하여 포화사질토의 동역학적 거동을 모사하는 예측기법을 개발하였다. 실내진동전단시험 자료로부터 DSC모델 매개변수를 찾고, DSC 모델을 이용하여 전개한 응력중분과 변형률중분의 관계를 표현하는 탄소성구성방정식으로부터 진동하중을 받는 지반재료의 간극수압 및 유효응력 변화, 그리고 축자응력-축방향변형률 거동을 예측하였다. 압축 및 인장 재하시에는 DSC모델을 사용하여 변형률 경화(strain-hardening)및 진동하중에 의한 변형률 연화(cyclic-softening)현상을 모사하고, 제하(unloading)시에는 선형탄성모델을 사용하여 근사화하였다. 예측 결과를 실내전단시럼 결과와 비교하여 예측기법을 검증하였다.

  • PDF

Evaluation of the Effect of Coupler on the Ductility of Rebar by Uniaxial Tensile Test (1축 인장시험을 통한 커플러가 철근 연성도에 미치는 영향 평가)

  • Woo, Tae-Ryeon;Lee, Jong-Han;Cheung, Jin-Hwan;Jung, Chi-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.90-98
    • /
    • 2018
  • Recently, various reinforced concrete joints have been used in reinforced concrete structures. Therefore, it is important to grasp the tensile properties of the spliced rebar. In this study, uniaxial tensile tests were conducted on Grade 60 D22(#7), D29(#9), and two kinds of couplers manufactured according to ASTM A615 standard for evaluating ductility of coupler joints. The strain was measured using an image processing method more accurate and capable of measuring at various points freely. As the result of uniaxial tensile test, it was possible to calculate the stress-strain relationship and the longitudinal strain distribution according to the stress stages and it was founded that the average strain becomes lower as more occupying the coupler joint portions in the same gauge length. In addition, the empirical equations are proposed to account for the effect of the length of the coupler on the ultimate strain and the rupture strain.

Experimental Studies on Creep of Concrete under Multiaxial Stresses (다축응력 상태에 놓인 콘크리트외 크리프 특성에 관한 실험 연구)

  • Kwon Seung-Hee;Kim Sun-Young;Kim Jin-Keun;Lee Soo-Gon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.185-194
    • /
    • 2004
  • It is difficult to analyze and predict the long-term behavior of concrete structures and members under multiaxial stresses because most of existing researches on creep of concrete were mainly concerned about uniaxial stress state. Therefore, the main objective of this paper is the investigation of creep properties of concrete under multiaxial stresses. This paper presents experimental study on creep of concrete under multiaxial compression. Twenty seven cubic specimens($20{\times}20{\times}20 cm$) for three concrete mixes were tested under uniaxial, biaxial, and triaxial stress states. Creep strains were measured in three directions of principal stresses. Poisson's ratio at the initial loading was obtained, as was Poisson's ratio due to creep stain and Poisson's ratio due to the combined creep strain and elastic strain. These Poisson's ratios were approximately equal for each concrete mix. The Poisson's ratio at the initial loading and the Poisson's ratio for the combined strain Increased slightly as the strength of the concrete increased. In addition, the volumetric creep strain and deviatoric creep strain were linearly proportional to volumetric stress and deviatoric stress, respectively.

Compressibility and Stiffness Characteristics of Vanishing Mixtures (지반 소실 혼합재의 압축성 및 강성 특성)

  • Truong, Q. Hung;Eom, Yong-Hun;Yoon, Hyung-Koo;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.103-111
    • /
    • 2008
  • Soils naturally contain grains of different minerals which may be dissolved under chemical or physical processes. The dissolution leads changes in microstructure of particulate media, such as an increase in local void or permeability, which affects the strength and deformation of soils. This study focuses on the small strain stiffness characteristics of vanishing mixtures, which consist of sand and salt particles at different volume fractions. Experiments are carried out in a conventional oedometer cell (Ko-loading) integrated with bender elements for the measurement of shear waves. Dissolutions of particles are implemented by saturating the mixtures at various confining stresses. Axial deformation and shear waves are recorded after each loading stage and during dissolution process. Experimental results show that after dissolution, the vertical strain and the void ratio increase, while the shear wave velocity and small strain shear modulus decrease. The decrease of the velocity results from the void ratio increase and particle contact decrease. The process monitoring during dissolution of the particles shows that the vertical strain dramatically increases at the beginning of the saturation process and converges after vanishing process finishes, and that the shear wave velocity decreases at the beginning and increases due to the particle reorientation. Specimens prepared by sand and salt particles are proved to be able to provide a valuable insight in macro structural behaviors of the vanishings mixtures.

Evaluation of Accumulated Axial Plastic Strain of Sands under Long-term Cyclic Loading (장기 반복하중을 받는 모래지반의 축방향 누적소성변형률 평가)

  • Seo, Min-Chang;Lee, Si-Hoon;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Offshore wind turbines have been constructed extensively throughout the world. These turbines are subjected to approximately $10^8$ horizontal load cycles produced from wind, waves, and current during their lifetimes. Therefore, the accumulated displacement of the foundation under horizontal cyclic loading has significant effects on the foundation design of a wind turbine. Akili(2006) and Achmus et al.(2009) performed cyclic triaxial tests on dry sands and proposed an empirical model for predicting the accumulated plastic strain of sands under long-term cyclic loading. In this study, cyclic triaxial tests were performed to analyze the cyclic loading behaviors of dry sands. A total of 27 test cases were performed by varying three parameters: the relative density of the sands, cyclic load level, and confining stress. The test results showed that the accumulated plastic strain increased with an increase in the cyclic load level and a decrease in the relative density of the sand. The confining stress had less effect on the plastic strain. In addition, the plastic strain at the 1st loading cycle was about 57% of the accumulated strain at 1,000 cycles. Finally, the input parameters of the empirical models of Akili(2006) and Achmus et al.(2009) were evaluated by using the relative density of the sand and the cyclic load level.

An Experimental Study on Pullout Behavior of Shallow Bearing Plate Anchor (얕은 지압형 앵커의 인발거동특성에 관한 실험적 연구)

  • Hong, Seok-Woo;Kim, Hyung-Kong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.2
    • /
    • pp.5-18
    • /
    • 2014
  • Depending on the underground load support mechanism, anchors are classified as friction anchors, bearing plate anchors and the recently developed combined friction-bearing plate anchors which combine the characteristics of both the friction and bearing plate type anchors. Even though numerous studies have been performed on bearing plate anchors, there were only few studies performed to observe the failure surface of bearing plate anchors. Furthermore most of the soil materials used on these tests were not real sand but carbon rods. In this study, sand was placed in the soil tank and laboratory tests were performed with bearing plate anchors installed with an embedment depth (H/h) ranging from 1~6. The variation in the pullout capacity and the behaviour of soil with the embedment depth (H/h) were observed. Ground deformation analysis program was also used to analyze soil displacement, zero extension direction, maximum shear strain contours. It was determined from the analysis of the results that at ultimate pullout resistance the deformation was 5 mm and the failure surface occurred in a narrower area when compared with results of the previous researches. It was also observed that the width of the fracture surface gradually becomes wider and expands up to the surface as the deformation increases from 10 mm to 15 mm.