• Title/Summary/Keyword: 축대칭형상

Search Result 150, Processing Time 0.023 seconds

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong-Rok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.487-491
    • /
    • 2009
  • A study is analyzed on the design factor of Center-body diffuser and performed on conceptual design of Center-body diffuser with Computational Fluid Dynamic. The flow field of Center-body diffuser is calculated using Axisymmetric two-dimensional Navier-Stokes equation with $k-{\omega}$ turbulence model. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure, the design factor.

  • PDF

Numerical Investigation on Seepage Discharge Inside a Cylindrical Cut-off Wall (수치해석을 이용한 대형원형강재 가물막이의 침투유량 분석)

  • Ssenyondo, Vicent;Tran, Van An;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.51-60
    • /
    • 2018
  • Recently, a cylindrical cut-off wall was proposed as a new technology for temporary offshore works. The cut-off wall has a cylindrical shape, so seepage analyses are necessary to analyze the effect of wall shape. In this study, a numerical analysis was performed to investigate the seepage discharge inside cut-off walls. The numerical modeling was verified by comparing with the theoretical solution for the cofferdam with double sheet piles. Two different flow conditions were compared between 2-dimensional flow and axisymmetric flow. The results showed that the discharge of the axisymmetric flow was about 1.55 times larger than that of 2-dimensional plain flow. A parametric study was carried out by varying wall radius, penetration depth of the wall, and total head difference between in and outside of the wall. The discharge decreased with the increase of the penetration depth and the wall radius. Finally, the design equations were suggested to determine the discharge for the preliminary design of the cylindrical cut-off wall.

Numerical Studies on Flow Structures with Various Shapes of Needle-type Pintle in Solid Rocket Motor (Needle 형 pintle 형상에 따른 고체 로켓 모터 내부 유동장의 수치적 연구)

  • Park, Byung-Hoon;Kim, Sang-Min;Yoon, Woong-Sup;Lee, Ji-Hyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.249-252
    • /
    • 2011
  • 고체로켓추진기관의 추력조절을 위해 핀틀 기술이 사용된다. 아직까지 핀틀 유동에 대해 근본적인 물리적 이해를 돕는 연구가 공개되지 않아, 이 연구에서 다양한 형상의 needle형 핀틀에 따른 유동구조에 대한 수치적 연구를 진행하였다. 2차원 축대칭, 압축성을 고려하여, 상용 열유체 해석 프로그램인 FLUENT 6.2를 사용하여 해석을 수행하였다. 난류 모델을 검증하기 위해 기 수행된 실험 결과와 비교하였다. 핀틀 각도(tip angle)가 작아질수록 노즐에서 유동 박리점이 하류로 이동하며, 핀틀에서 발생하는 끝단 충격파가 약해진다. 핀틀 반경(tip radius)이 작아질수록 핀틀에서 발생하는 끝단 충격파가 하류로 이동하며, 크기는 약해진다. 핀틀 형상(contour)은 유동 박리 지점에 직접적인 영향을 미친다.

  • PDF

A Study on Automated Outer Diameter Measurement System for Axisymmetric Automotive Part (자동차용 축대칭 형상 부품 외경 자동측정시스템에 관한 연구)

  • Ban, Kap-Soo;Bae, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.3
    • /
    • pp.61-68
    • /
    • 2013
  • Automatic measurement system is required since cycle time and cost of production are increased by various factors in manual systems. This paper presents a machine vision based prototype measurement system for the automotive axisymmetric shape parts which are generally measured by a manual system that is required the tolerance of the part is very small on each machined surface. This measurement system adopts a method in which optical lens is transferred along the profile of the part to minimize measurement cycle time. The main interest of this paper is a development of an optimum measurement algorithm to the outside diameter of the parts that can be applied to various combinations of hardware. The operating system used to implement the whole system is Window XP and corresponding environment.

Research trends on the automobile crush (자동차 충돌특성 연구동향)

  • 김천욱;한병기;원종진;임채홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-17
    • /
    • 1996
  • 자동차의 안전에 대한 연구는 객실의 변형제한과 승객의 감속도 축소를 위한 여러가지 구조부재의 에너지 흡수능력 및 흡수 메카니즘을 연구하는데 초점이 맞추어져 왔다. 그 이유는 충돌사고시에 인명을 보호하기 위해서는 차제변형에 의한 물리적 접촉의 회피 뿐 아니라 충돌에너지를 적절히 흡수조절하여 충돌력을 감소시키도록 구조부재를 설계함으로써 충돌안전성이 확보되기 때문이다. 충돌에너지 흡수 특성은 구조부재의 단면 형상과 재질에 따라 달라지며 압괴모드도 구분되어진다. 즉, 복합재료의 압축붕괴특성은 금속이나 플라스틱 재질과는 다르다. 일반적으로 복합재는 재질의 파손으로 에너지가 흡수되지만 금속재는 소성변형으로 에너지를 흡수한다. 이때의 붕괴양상은 작용하중에 따라 축방향 붕괴, 굽힘붕괴, 측면붕괴의 경우는 정규압괴모드(compact mode) 및 불규칙압괴모드(noncompact mode)로 나뉘고, 원통쉘의 경우는 축대칭모드 및 다이아몬드형 모드 등으로 나뉠수 있다. 원형 및 사각 튜브는 광범위한 형상비와 후폭비를 가지도록 제작할 수 있으며 산업전반에 걸쳐 널리 쓰이므로 충돌특성 연구의 대상으로 많은 연구들이 진행되어 왔다. 또한, 충돌특성의 해석을 위한 이론적 모델이 제시되었으며 계속적인 보완이 이루어져 오고 있다.

  • PDF

Thermal decomposition and ablation analysis of solid rocket propulsion (삭마 및 열분해 반응을 고려한 고체 추진기관의 열해석)

  • Kim, Yun-Chul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.113-122
    • /
    • 2010
  • A two-dimensional thermal response and ablation analysis code for predicting charring material ablation and shape change on solid rocket nozzle is presented. For closing the problem of thermal analysis, Arrhenius' equation and Zvyagin's ablation model are used. The moving boundary problem are solved by remeshing-rezoning method. For simulation of complicated thermal protection systems, this method is integrated with a three-dimensional finite-element thermal and structure analysis code through continuity of temperature and heat flux.

  • PDF

A Study on the Characteristics of Nonlinear Unstable Phenomenon According to the Shape Variation of Cable Domes (케이블 돔 구조물의 형태 변화에 따른 비선형 불안정 거동의 특성에 관한 연구)

  • Kim, Seung Deog;Back, In Seong;Kim, Hyung Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.3 s.70
    • /
    • pp.345-353
    • /
    • 2004
  • One of the key issues in spatial structures with large spaces is how to carry the weight of the roof. This can be solved by the effective use of tension members. A cable dome structural system facilitates the construction of a large space structure. As external load increases, however, the cable dome structural system is put at risk due to global buckling. This study measures the shape of the Geiger and Flower-type cable dome by applying an initial stress. This unstable phenomenon is also examined using a perfectly shaped model and an imperfect model, which are both subjected to an axisymmetric load.

Three-Dimensional Vibration Analysis of Solid and Hollow Hemispheres Having Varying Thickness (변두께를 갖는 두꺼운 반구형 쉘과 반구헝체의 3차원적 진동해석)

  • 심현주;장경호;강재훈
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of solid and hollow hemispherical shells of revolution of arbitrary wall thickness having arbitrary constraints on their boundaries. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components μ/sub Φ/, μ/sub z/, and μ/sub θ/ in the meridional, normal, and circumferential directions, respectively, are taken to be sinusoidal in time, periodic in θ, and algebraic polynomials in the Φ and z directions. Potential (strain) and kinetic energies of the hemispherical shells are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Novel numerical results are presented for solid and hollow hemispheres with linear thickness variation. The effect on frequencies of a small axial conical hole is also discussed. Comparisons are made for the frequencies of completely free, thick hemispherical shells with uniform thickness from the present 3-D Ritz solutions and other 3-D finite element ones.

Numerical Investigation on Seepage Stability in Offshore Bucket Cut-off Walls (수치해석을 이용한 대형원형강재 가물막이의 침투 안정성 분석)

  • Ssenyondo, Vicent;Tran, Van An;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.73-82
    • /
    • 2017
  • Recently, offshore bucket cut-off walls were developed to solve several problems in conventional offshore cut-off walls. In this study, a numerical analysis was carried out to investigate the seepage stability of offshore bucket cut-off walls. The ground was assumed as uniform homogeneous sand and steady state flow conditions were applied. The flow condition was compared among 2-dimensional flow (2-D), 2-dimensional concentrated flow (2-DC), and axisymmetric flow. The analysis results showed that the seepage velocities in axisymmetric flow were about 1.5 and 2 times larger than those of 2-DC and 2-D flow conditions, respectively. Thereafter, the axisymmetric flow condition was applied because the seepage flow was concentrated toward the center of the circular-shaped wall. A parametric study was performed varying bucket radius, penetration depth, total head difference between in and outside of the wall. The exit gradient, which used for the calculation of piping stability, decreased with increase of the penetration depth and bucket radius. Design charts were proposed to estimate the factor of safety and the exit gradient at various analysis conditions. Finally, the design equation was proposed to calculate the exit gradient for the preliminary design of the bucket cut-off wall.

Numerical Study for Design of Center-body Diffuser (Center-body 디퓨져 형상설계를 위한 수치적연구)

  • Kim, Jong Rok;Kim, Jae-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.3
    • /
    • pp.34-39
    • /
    • 2014
  • A study is analyzed on the design factor of center-body diffuser and performed on conceptual design of center-body diffuser with computational fluid dynamic. The flow field of center-body diffuser is calculated using axisymmetric two-dimensional Navier-Stokes equation with $k-{\epsilon}$ turbulencemodel. The center-body diffuser is compared with second throat exhaust diffuser in terms of starting pressure, the degree of vacuum pressure and the design factors. The counter flow jet on cone-tip of the center-body is applied for thermal protection system in the center-body diffuser.