• Title/Summary/Keyword: 축교정

Search Result 98, Processing Time 0.026 seconds

Accelerated Life Evaluation of Drive Shaft Using Vehicle Load Spectrum Modeling (차량 부하 스펙트럼 모델링을 이용한 구동축의 가속 수명 평가)

  • Kim, Do Sik;Lee, Geun Ho;Kang, E-Sok
    • Transactions of the KSME C: Technology and Education
    • /
    • v.5 no.2
    • /
    • pp.115-126
    • /
    • 2017
  • This paper proposes an accelerated life evaluation of drive shaft for the power train parts of special purpose vehicle. It is necessary the real load data of usage level driving load condition for life evaluation of power train parts, but we can't get the load spectrum data for evaluation in many case of special purpose vehicle. So, in this paper, the road load spectrum data for evaluation is created by modeling and simulation based on vehicle data and special road condition. The inverse power model is used for accelerated life test. The equivalent torque of load spectrum is achieved using the Miner's Rule. This paper also proposes the calibrated acceleration life test method for drive shaft. The fatigue test is performed through three stress levels. The lifetime at normal stress level is predicted by extrapolation, and is verified through comparison of experimental results and load spectrum data.

An investigation Of IntraFraction Motion Correction For Lung Stereotactic Body Radiation Therapy By Using IntraFraction Cone Beam Computed Tomography (폐암 환자의 정위적 체부 방사선 치료 시 IntraFraction CBCT를 이용한 치료 중 자세 오차 교정에 대한 고찰)

  • Song, Hyeong Seok;Cho, Kang Chul;Park, Hyo Kuk;Yoon, Jong Won;Cho, Jung Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • Purpose: The purpose is to correct for position errors caused by long treatment times. By correcting the target motion that can occur during lung SBRT using IntraFraction CBCT. Methods and materials: We analyzed retrospectively the IFM data of 14 patients with two treatment arc in the treatment plan for lung cancer with stereotactic radiotherapy. An IntraFraction Motion was applied to the Arccheck phantom to acquire the Gamma index data. Results : IntraFraction Motion during the first treatment arc is in the left-right(LR), superiorinferior(SI), anterior-posterior(AP) directions were $0.16{\pm}0.05cm$, 0.72 cm(max error), $0.2{\pm}0.14cm$, 1.26 cm, $0.24{\pm}0.08cm$, 0.82 cm and rotational directions was $0.84{\pm}0.23^{\circ}$, $2.8^{\circ}$(pitch), $0.72{\pm}0.23^{\circ}$, $2.5^{\circ}$(yaw), $0.7{\pm}0.19^{\circ}$, $2^{\circ}$(roll). IntraFraction Motion during the second treatment arc is in the LR, SI, AP directions were $0.1{\pm}0.04cm$, 0.37 cm, $0.14{\pm}0.17cm$, 2 cm, $0.12{\pm}0.04cm$, 0.5 cm and rotational directions was $0.45{\pm}0.12^{\circ}$, $1.3^{\circ}$, $0.37{\pm}0.1^{\circ}$, $1^{\circ}$, $0.35{\pm}0.1^{\circ}$, $1.2^{\circ}$. Gamma index pass rates were $82.64{\pm}10.51%$, 48.4 %. Conclusions : In this study, we examined the validity of IntraFraction Motion correction in lung SBRT and the efficiency of IntraFraction CBCT. Due to the nature of SBRT treatment, IFM may increase due to the increased treatment time. It is believed that the increase in IFM with the increase in treatment time can be improved with the use of FFF Beam and additional position correction using CBCT during treatment.

터빈계통의 축정렬 (I) : 원리와 방법

  • Hwang, Cheol-Ho;Kim, Jeong-Tae;Lee, Hyun;Lee, Byeong-Jun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.71-76
    • /
    • 1992
  • 축정렬이 불량한 경우 축진동이 과도하게 발생하여 출력이 감소하고 소음이 발생하며, 심한 경우 회전체의 파손과 같은 손실을 입을 수 있다. 특히 축 정렬불량으로 인한 진동은 교정이 안되는 것이 특징이므로 근본적으로 진동 을 해결하기 위해서는 축 정렬을 다시 시행해야 한다. 그러나 터빈은 다른 기계 구조물과 달리 분해 점검에 많은 시간과 경비가 요구되므로 축 정렬시 정확한 작업이 요구된다. 본 연구에서는 터빈계통의 축정렬을 수행하는 절차 와 방법에 대해서 검토하였다. 이를 위해 축정렬이 입력데이터로 쓰일 수 있 는 상태측정방법중 커플링 원주와 커플링 면 측정방법이 설명되었으며, 측정 값으로부터 축정렬을 수행하기 위해, 베어링의 이동량 계산과정과 쉼 가감량 의 계산방법을 기술하였다. 축정렬의 원리와 방법의 적용과정을 실제로 알아 보기 위해 평택화력 1,2호기에 대한 축정렬이 수행되었다. 1,2호기는 고압터 빈, 2단계의 저압터빈 및 발전기로 구성되어 있는 다축 시스템으로서, 제작 사측에서 요구하는 정렬 기준값을 감안하여 축정렬에 필요한 베어링 조정량 을 계산하였다. 계산과정은 기준로터로 지정된 저압터빈에서부터 축정렬상태 도를 작성하여 가면서 단계적으로 설명되었으며, 최종적으로 쉼의 가감량까 지를 보여줌으로서 축정렬과정을 완료하였다.

  • PDF

Verification of Indicator Rotation Correction Function of a Treatment Planning Program for Stereotactic Radiosurgery (방사선수술치료계획 프로그램의 지시자 회전 오차 교정 기능 점검)

  • Chung, Hyun-Tai;Lee, Re-Na
    • Journal of Radiation Protection and Research
    • /
    • v.33 no.2
    • /
    • pp.47-51
    • /
    • 2008
  • Objective: This study analyzed errors due to rotation or tilt of the magnetic resonance (MR) imaging indicator during image acquisition for a stereotactic radiosurgery. The error correction procedure of a commercially available stereotactic neurosurgery treatment planning program has been verified. Materials and Methods: Software virtual phantoms were built with stereotactic images generated by a commercial programming language, Interactive Data Language (version 5.5). The thickness of an image slice was 0.5 mm, pixel size was $0.5{\times}0.5mm$, field of view was 256 mm, and image resolution was $512{\times}512$. The images were generated under the DICOM 3.0 standard in order to be used with Leksell GammaPlan$^{(R)}$. For the verification of the rotation error correction function of Leksell GammaPlan$^{(R)}$, 45 measurement points were arranged in five axial planes. On each axial plane, there were nine measurement points along a square of length 100 mm. The center of the square was located on the z-axis and a measurement point was on the z-axis, too. Five axial planes were placed at z=-50.0, -30.0, 0.0, 30.0, 50.0 mm, respectively. The virtual phantom was rotated by $3^{\circ}$ around one of x, y, and z-axis. It was also rotated by $3^{\circ}$ around two axes of x, y, and z-axis, and rotated by $3^{\circ}$ along all three axes. The errors in the position of rotated measurement points were measured with Leksell GammaPlan$^{(R)}$ and the correction function was verified. Results: The image registration errors of the virtual phantom images was $0.1{\pm}0.1mm$ and it was within the requirement of stereotactic images. The maximum theoretical errors in position of measurement points were 2.6 mm for a rotation around one axis, 3.7 mm for a rotation around two axes, and 4.5 mm for a rotation around three axes. The measured errors in position was $0.1{\pm}0.1mm$ for a rotation around single axis, $0.2{\pm}0.2mm$ for double and triple axes. These small errors verified that the rotation error correction function of Leksell GammaPlan$^{(R)}$ is working fine. Conclusion: A virtual phantom was built to verify software functions of stereotactic neurosurgery treatment planning program. The error correction function of a commercial treatment planning program worked within nominal error range. The virtual phantom of this study can be applied in many other fields to verify various functions of treatment planning programs.

A Study of Residual Stress and Plastic Deformation of a Bar with Gap Size Changes Between Rolls in a Two Cross-Roll Straightener (두롤 교정기의 롤 갭 변화에 따른 봉강의 잔류응력과 소성변형에 관한 연구)

  • Cho, Hyun-Soo;Hahm, Ju-Hee;Lee, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.355-360
    • /
    • 2012
  • Cold drawn(CD) bars feature superb surface roughness, dimensional precision, and straightness. They are used in the manufacture of automotive parts and home electrical appliances. Two cross-roll straighteners have been used to manufacture CD bars for these industries. This study investigated the variation of the gap size between the two cross-rolls. It was found that changes in the gap size have a large influence on the residual stress and plastic deformation. Finite element method(FEM) simulations were performed to study the influence of the gap size on the residual stress in CD bars, and experiments were performed to verify the FEM results. The residual stresses were measured with X-ray diffraction in both the axial and the hoop directions.

Changes of Corrective Astigmatism Values Depending on Position of Circle of Least Confusion in Astigmatic Refining Test Using Cross Cylinder (크로스실린더를 이용한 난시정밀검사에서 검사 전 최소착란원 위치에 따른 난시교정값의 변화)

  • Kim, Sang-Yeob;Lee, Min Jae;Lee, Kang Cheon;Lee, Tae Hui;Moon, Byeong-Yeon;Cho, Hyun Gug
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.349-354
    • /
    • 2015
  • Purpose: To investigate the changes of corrective values of astigmatism caused by the position of circle of least confusion on retina in refining astigmatic test using cross cylinder. Methods: 62 subjects (115 eyes) aged $22.24{\pm}2.48$ years participated for this study. After astigmatic test using a radial chart, refining test was performed using a cross cylinder in a condition of maximum plus to maximum visual acuity (MPMVA). Astigmatic refining test was repeatedly performed in each condition of which S+0.75 D, S+0.50 D, S+0.25 D, S-0.25 D, S-0.50 D, and S-0.75 D are added to spherical lenses of MPMVA. The measured values were compared with the values in MPMVA condition. Results: As compared with values in condition of MPMVA, change of astigmatic axis was increased with add the power of (+) spherical lenses and (-) spherical lenses. In same spherical condition, change of astigmatic axis was decreased with increment of astigmatic power (p<0.05). The corrective power of astigmatism was reduced with increment of (+) spherical lenses (p<0.05), and was raised with increment of (-) spherical lenses compared with the power in MPMVA condition. In case of adding (+) spherical lenses, difference of astigmatic power increased with increment of corrective astigmatism power in same test condition. Conclusions: In order to obtain a proper values for corrective astigmatism, position of circle of least confusion should be accurately adjusted before the performing an astigmatism's refining test.

AN EXPERIMENTAL STUDY ON THE STRESS DISTRIBUTION IN THE PERIODONTAL LIGAMENT (치주인대의 응력 분포 양상에 관한 실험 연구)

  • Choy, Kwang-Chul;Kim, Kyung-Ho;Park, Young-Chel;Han, Jung-Yun
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.15-24
    • /
    • 2001
  • In order to achieve a desirable tooth movement, it is of great importance to control the M/F ratio and to know the location of the center of resistance. The purpose of this study was to locate the center of resistance and the axis of rotation, and to estimate the stress distribution in the periodontal ligament with experimental model. After preparing a model of an upper canine with a simulated periodontal ligament and alveolar bone, the force and moment were applied. The tooth movement was traced using measuring device with LVDTs(Linear variable differential transformers) that can measure three dimensional tooth movement in real time. The results were as follows. 1. The location of center of resistance by transverse force was $29\%$ of root length measured from alveolar crest to apex regardless of force magnitude. The position of the center of resistance is more coronal than that of two-dimensional model($42\%$). 2. The center of resistance and the axis of rotation coincide when couple moment was applied. 3. As the magnitude of moment increases, tooth tends to extrude irrespective of the direction of the moment. 4. The relationship between location of force and axis of rotation (a x b = $49.6\;mm^2$) was obtained. A tooth movement can be predicted through this formula. 5. The centers of rotation by transverse force were plotted linearly.

  • PDF

Treatment of Traumatic Occlusion (외상성교합의 처치)

  • Hwang, Gwang-Se
    • The Journal of the Korean dental association
    • /
    • v.21 no.6 s.169
    • /
    • pp.459-462
    • /
    • 1983
  • 교합의 부조화는 외상성교합을 야기시킬 뿐만 아니라 치태의 침착을 용이하게 하며 일단 침착된 치태의 제거에도 애로점이 있고 외과적으로 치주낭을 제거하기 위한 술식을 적용할 때에도 문제점이 있다. 따라서 교합의 부조화를 치료해주는 교합치료는 완벽한 치주처치를 위한 중요한 한 분야이다. 특히 치주과 영역에서 외상성교합의 처치는 필수적이며, 그 방법도 대단히 다양하다. 외상성 교합의 증상에 따라서 치료방법을 선택하자면 다음과 같다. 우선 치은조직에 치은퇴축 혹은 형태의 이상이 야기되었을 때에는 이에 따라 외과적인 처치가 선행되어야 함은 물론이며 다음 단계가 치아의 위치이상을 교정적인 처치를 통하여 정복하거나 동요치를 안정시켜줄 필요가 있으며 또한 정확한 교합조정술이 필요하다. 교합조정술에 대한 제반 사항과 술식에 대하여는 본지, 1982년도 6월호에 상세히 언급되었으므로 본 원고에서는 교정적인 처치방법과 치주고정장치의 적용에 대하여 기술 하고자 한다.

  • PDF

Autocalibration Method of Three-axis Micromachined Accelerometers (3축 MEMS 가속도 센서의 이득 및 오프셋 자동 교정법)

  • Song, Ci-Moo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.456-460
    • /
    • 2006
  • This paper deals with a novel autocalibration method of three-axis micromachined accelerometers applied to a new digital intelligent putter for golfers. This putter can help golfers monitor and analyze their putting posture and therefore modify their putting action to get better score and enjoy their lives through golf. The micromachined accelerometers to get information of the motion are the essential part of the putter to measure the three-axis acceleration as accurately as possible. This paper presents an efficient autocalibration algorithm to find the offset and sensitivity of accelerometers by only using the static measurement data at six different positions. The experimental results on the developed putters show the validity of the proposed algorithm for the new smart putter.

3D Reconstruction from multiple Images (다중 영상으로부터 3차원 재구성)

  • Kim, Sang-Hoon;Kim, Tae-Eun;Choi, Jong-Soo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • 본 논문에서는 3차원 재구성에 있어서 필수 불가결한 기술인 카메라 교정 방법에 있어서 특정 교정 물체나 또는 영상에서의 제약 조건 등을 요구하지 않고 영상 내에 산재되어 있는 기하학 정보를 이용하여 카메라 내부 파라미터를 추출하고 영상간의 카메라 움직임을 계산하여 3차원 재구성하는 알고리즘을 제안한다. 공간에서의 직교하는 평행선들의 집합이 만들어 낸 자 축 방향으로의 3개의 소실 점을 이용하면 그 투영 영상에 대한 카메라 내부 파라미터를 얻을 수 있게 된다. 또 한 영상간의 대응점 관계를 이용하면 두 영상 사이의 상대적인 카메라의 회진 및 이동 성분을 얻어 낼 수 있다. 따라서 카메라의 내부, 외부 성분을 추출함으로써 사영 행렬을 계산하고 역 투영 방법에 의해서 3차원 재구성을 구현하게 된다.

  • PDF