• 제목/요약/키워드: 추출요약

검색결과 695건 처리시간 0.026초

문서 구조 정보를 이용한 확률 모델 기반 자동요약 시스템 (An Automatic Summarization System Based On a Probabilistic Model Using Document Structure Information)

  • 장동현;맹성현
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1997년도 제9회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.15-22
    • /
    • 1997
  • 인터넷과 정보 서비스 기술의 발달로 일반 대중에게 제공되는 정보의 양은 기하급수적으로 증가하고 있는 추세지만 사용자가 원하는 정보를 얻기는 더욱 어려워지고 있으며, 필요한 정보를 찾은 경우에도 그 양이 많기 때문에 전체적인 내용을 파악하는 데 많은 시간을 소비하게 된다. 이러한 문제를 해결하고자 본 연구에서는 통계적 모델을 사용하여 문서로부터 문장을 추출한 후 요약문을 작성하여 사용자에게 제시하는 시스템을 개발하였다. 문서 요약 시스템의 구축을 위하여 사용된 방법은 문서 집합으로부터 중요 문장을 추출한 후 이로부터 요약문에 나타날 수 있는 특성(feature)과 중요 단어를 학습하여 학습된 내용을 이용하여 요약문을 하는 방법이다. 시스템 개발 및 평가를 위해 사용된 문서는 정보 과학 분야의 논문 모음이며 이를 학습 데이터와 실험 데이터로 구분한 후 학습 데이터로부터 필요한 정보를 얻고 실험 데이터로 평가하였다.

  • PDF

광범위한 지역 감시시스템에서의 행동기반 비디오 요약 (Activity-based video summarization in a wide-area surveillance system)

  • 권혜영;이윤미;이경미
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2007년도 학술대회 1부
    • /
    • pp.719-724
    • /
    • 2007
  • 본 논문에서는 광범위한 지역을 감시하기 위해 설치된 여러 대의 카메라로부터 획득된 비디오에 대해 행동을 기반으로 한 비디오 요약 시스템을 제안한다. 제안된 시스템은 시야가 겹쳐지지 않은 다수의 CCTV 카메라를 통해서 촬영한 비디오들을 30분 단위로 나누어 비디오 데이터베이스를 구축하여 시간별, 카메라별 비디오 검색이 가능하다. 또한 비디오에서 키프레임을 추출하여 카메라별, 사람별, 행동별로 비디오를 요약할 수 있도록 하였다. 또한 임계치에 따라 키프레임 검색정도를 조절함으로써 비디오 요약정도를 조절할 수 있다. in. out, stay, left, right, forward, backward와 관련된 11가지 행동을 추출하여 요약된 정보를 가지고 현재 사람의 행동이 어떤 영역에서 어떤 방향으로 움직이고 있는 지에 대한 정보를 보여줌으로써 더 자세히 행동추적을 할 수 있다. 또한 카메라 3대에 대한 전체적인 키프레임에 대한 행동별 통계를 통해서 감시지역의 행동기반 이벤트를 간단히 확인해 볼 수 있다.

  • PDF

키워드 요약의 세 가지 방법론 비교 (Compare Three Method for Keyword Summary)

  • 강종렬;남지성;박지나;김웅섭
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.852-854
    • /
    • 2019
  • 본 논문은 정확한 연관검색어를 보여주지 못하는 기존의 검색에서 벗어나기 위해 이미지와 PDF에서 텍스트를 추출하고 키워드 요약하는 방법을 사용하였다. 텍스트를 키워드로 요약하는 알고리즘으로는 TextRank, LSA, MMR을 사용하였고, 세 가지 방법으로 키워드를 요약하고 키워드 요약 결과와 Query의 코사인 유사도를 이용하여 추출한 문서와 Query와의 연관성을 확인하여 세 가지 알고리즘을 비교하였다.

언어 분석 자질을 활용한 인공신경망 기반의 단일 문서 추출 요약 (Single Document Extractive Summarization Based on Deep Neural Networks Using Linguistic Analysis Features)

  • 이경호;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권8호
    • /
    • pp.343-348
    • /
    • 2019
  • 최근의 문서요약 시스템은 인공신경망을 이용한 End-to-End 방식이 주류를 이루고 있다. 이러한 시스템은 인간의 자질 추출 과정이 필요 없으며 데이터 중심의 접근 방법을 채택한다. 그러나 기존의 관련 연구들은 품사 정보, 개체명 정보, 단어의 빈도 정보와 같은 언어 분석 자질이 중요 문장을 선택하여 요약을 작성하는데 유용함을 보여왔다. 본 연구에서는 기존의 언어 분석 자질을 활용하여 인공신경망을 기반으로 한 단일 문서의 추출 요약 시스템을 제안한다. 언어 분석 자질의 유용성을 보이기 위해 자질을 사용하는 모델과 사용하지 않는 모델을 비교하였다. 실험 결과 자질을 사용하는 모델이 그렇지 않은 모델에 비해 약 0.5점의 Rouge-2 F1점수 향상을 보였다.

공기정보를 이용한 한국어 요약 시스템의 성능개선 (Performance Improvement of Korean Indicative Summarizer)

  • 박호진;김준홍;김재훈
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.349-351
    • /
    • 2001
  • 본 논문은 공기정보를 이용하여 한국어 추출요약 시스템의 성능을 개선한다. 여기서 공기정보는 복합명사와 구문관계를 말하며, 복합명사는 인접한 명사들 사이의 공기관계이고, 구문관계는 인접한 명사와 동사 사이의 공기관계를 말한다. 본 논문에서는 공기관계는 t test를 이용하였다. 공기정보를 이용한 시스템은 기존의 시스템보다 좋은 성능을 보였으나, 커다란 성능 향상을 가져오지 못했다. 복합명사는 거의 모든 환경에서 좋은 결과를 가져왔으나, 구문관계는 그렇지 못했다. 앞으로 공기정보의 추출방법을 좀더 개선한다면 좀더 좋은 성능을 기대할 수 있을 것이다.

  • PDF

질의응답서비스를 위한 복수 응답 요약에 관한 연구 (A Study on Summarizing Multi-Answers for Question Answering Service)

  • 최상희
    • 한국정보관리학회:학술대회논문집
    • /
    • 한국정보관리학회 2006년도 제13회 학술대회 논문집
    • /
    • pp.175-180
    • /
    • 2006
  • 이 연구에서는 질의응답을 기반으로 한 검색 서비스를 이용할 때 이용자가 효율적으로 응답정보를 이용할 수 있도록 검색되는 복수 응답을 요약하는 방안을 제시하였다. 복수 응답을 요약하기 위해서는 질의중심방식과 응답중심방식이 비교되었다. 생성된 요약문을 평가한 결과 응답내용을 중심으로 요약하는 방식이 질의중심으로 요약하는 방식보다 질의에 적합한 문장을 효과적으로 추출하고 중복되는 정보도 줄여주는 것으로 나타났다.

  • PDF

그래프 분할을 이용한 문장 클러스터링 기반 문서요약 (Document Summarization Based on Sentence Clustering Using Graph Division)

  • 이일주;김민구
    • 정보처리학회논문지B
    • /
    • 제13B권2호
    • /
    • pp.149-154
    • /
    • 2006
  • 문서요약은 여러 개의 하위 주제로 구성되어 있는 문서에 대해 문서의 복잡도를 줄이면서 하위 주제를 모두 포함하는 요약문을 생성하는 것이 목적이다. 본 논문은 그래프 분할을 이용하여 하위 주제별로 중요 문장을 추출하는 요약시스템을 제안한다. 문장별 공기정보에 의한 단어의 연관성 분석을 통해 선정된 대표어를 이용하여 문서를 그래프로 표현한다. 그래프는 연결정보에 의해 하위 주제를 의미하는 부분 그래프로 분할되며 부분 그래프는 긴밀한 관계를 갖는 문장들이 클러스터링된 형태이다. 부분 그래프별로 중요 문장을 추출하면 하위 주제별 핵심 내용들로만 요약문을 구성하게 되어 요약 성능이 향상된다.

신문기사와 소셜 미디어를 활용한 한국어 문서요약 데이터 구축 (Building a Korean Text Summarization Dataset Using News Articles of Social Media)

  • 이경호;박요한;이공주
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제9권8호
    • /
    • pp.251-258
    • /
    • 2020
  • 문서 요약을 위한 학습 데이터는 문서와 그 요약으로 구성된다. 기존의 문서 요약 데이터는 사람이 수동으로 요약을 작성하였기 때문에 대량의 데이터 확보가 어려웠다. 그렇기 때문에 온라인으로 쉽게 수집 가능하며 문서의 품질이 우수한 인터넷 신문기사가 문서 요약 연구에 많이 활용되어 왔다. 본 연구에서는 언론사가 소셜 미디어에 게시한 설명글과 제목, 부제를 본문의 요약으로 사용하여 한국어 문서 요약 데이터를 구성하는 것을 제안한다. 약 425,000개의 신문기사와 그 요약데이터를 구축할 수 있었다. 구성한 데이터의 유용성을 보이기 위해 추출 요약 시스템을 구현하였다. 본 연구에서 구축한 데이터로 학습한 교사 학습 모델과 비교사 학습 모델의 성능을 비교하였다. 실험 결과 제안한 데이터로 학습한 모델이 비교사 학습 알고리즘에 비해 더 높은 ROUGE 점수를 보였다.

육하원칙 정보에 기반한 홈비디오 키프레임 추출 (Keyframe Extraction from Home Videos Using 5W and 1H Information)

  • 장철훈;조성현;이승용
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제19권2호
    • /
    • pp.9-18
    • /
    • 2013
  • 본 논문에서는 육하원칙 정보를 기반으로 홈비디오에서 키프레임을 추출하는 방법을 제시한다. 키프레임 추출방법이란 비디오에서 중요하다고 생각되는 특정 프레임만을 선출하여 비디오를 요약하는 방법이다. 홈비디오의 경우 그 주제가 다양하여 특별한 가정을 통한 정보 추출이 어렵고, 주로 인물이 비디오의 중심이 되기 때문에 인물의 행동을 중심으로 요약을 수행하여야 한다. 본 논문에서는 인물의 얼굴, 인물의 행동, 전체 배경 정보를 분석하여 인물 중심의 보편적인 요약 기준인 육하원칙의 주요 정보를 추출한다. 추가적으로 비디오의 매 프레임의 블러 크기를 측정하여 이용함으로써 프레임별로 얼마나 많은 정보를 포함하고 있는지 측정하고, 가장 많은 정보를 포함한 프레임을 키프레임으로 선출한다. 사용자 실험을 통해 사용자가 홈비디오에서 여러 개의 키프레임을 선택할 경우, 기존의 방법보다 사용자의 선택과 유사함을 확인할 수 있다.

한국어 기준명사 추출 및 그 응용 (Korean Base-Noun Extraction and its Application)

  • 김재훈
    • 정보처리학회논문지B
    • /
    • 제15B권6호
    • /
    • pp.613-620
    • /
    • 2008
  • 정보검색, 문서요약 등의 분야에서 명사추출은 매우 중요하다. 본 논문은 대량의 문서로부터 기준명사를 효과적으로 추출하기 위한 한국어 기준명사 추출 시스템을 제안하고 이를 문서요약 시스템에 적용한다. 기준명사는 명사들 중에서 기본이 되는 명사이며 복합명사는 포함되지 않는다. 본 논문에서는 두 가지 기술 즉 여과기법과 분리기법을 사용한다. 먼저 여과기법을 이용해서 명사를 포함하지 않은 어절을 미리 제거하고, 그리고 분리기법을 이용해서 명사가 포함된 어절에서 명사와 조사를 분리하고, 복합명사에 해당할 경우에는 각 명사를 분리하여 기준명사를 추출한다. ETRI 말뭉치를 대상으로 실험한 결과, 재현율과 정확률 모두 약 89% 정도의 성능을 보였으며, 제안된 시스템을 한국어 문서요약 시스템에 적용해 보았을 때, 좋은 결과를 얻을 수 있었다.