• 제목/요약/키워드: 추출요약

검색결과 695건 처리시간 0.224초

이벤트-캡션을 이용한 축구비디오 요약 (Soccer Video Summarization Using Event-Caption)

  • 신성윤;하연실;고경철;이양원
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.245-248
    • /
    • 2001
  • 비디오 데이터에서 캡션은 비디오의 중요한 부분과 내용을 나타내는 가장 보편적이 방법이다. 본 논문에서는 축구 비디오에서 캡션이 갖는 특징을 분석하고 캡션에 의한 키 프레임을 추출하도록 하며, 비디오 요약 생성 규칙에 따라 요약된 비디오를 생성하도록 한다. 키 프레임 추출은 이벤트 발생에 따른 캡션의 등장과 캡션 내용의 변화를 추출하는 것으로 탬플리트 매칭과 지역적 차영상을 통하여 추출하며 샷의 재설정 통하여 중요한 이벤트를 포함한 요약된 비디오를 생성하도록 한다.

  • PDF

자막 분석을 이용한 축구 비디오 요약 (Soccer Video Summarization Using Caption Analysis)

  • 임정훈;국나영;곽순영;강일고;이양원
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2002년도 추계학술발표논문집
    • /
    • pp.77-80
    • /
    • 2002
  • 비디오 데이터에서 캡션은 비디오의 중요한 부분과 내용을 나타내는 가장 보편적인 방법이다. 본 논문에서는 축구 비디오에서 캡션이 갖는 특징을 분석하고 캡션에 의한 키 프레임을 추출하도록 하며, 비디오 요약 생성 규칙에 따라 요약된 비디오를 생성하도록 한다. 키 프레임 추출은 이벤트 발생에 따른 캡션의 등장과 캡션 내용의 변화를 추출하는 것으로 탬플리트 매칭과 지역적 차영상을 통하여 추출하며 샷의 재설정 통하여 중요한 이벤트를 포함한 요약된 비디오를 생성하도록 한다.

  • PDF

자막 분석을 이용한 축구비디오 요약 (Soccer Vodeo Summarization Using Caption Analysis)

  • 신성윤;강일고;이양원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.579-582
    • /
    • 2002
  • 비디오 데이터에서 캡션은 비디오의 중요한 부분과 내용을 나타내는 가장 보편적인 방법이다. 본 논문에서는 축구 비디오에서 캡션이 갖는 특징을 분석하고 캡션에 의한 키 프레임을 추출하도록 하며, 비디오 요약 생성 규칙에 따라 요약된 비디오를 생성하도록 한다. 키 프레임 추출은 이벤트 발생에 따른 캡션의 등장과 캡션 내용의 변화를 추출하는 것으로 탬플리트 매칭과 지역적 차영상을 통하여 추출하며 샷의 재설정 통하여 중요한 이벤트를 포함한 요약된 비디오를 생성하도록 한다.

  • PDF

잠재 토픽을 이용한 문서 요약문 추출 (Document Summarization Using Latent Topics)

  • 정영섭;최호진
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(C)
    • /
    • pp.240-243
    • /
    • 2011
  • 웹 문서를 비롯한 여러 가지 문서의 양이 급증함에 따라, 문서로부터 주요정보를 얻거나 자동으로 요약하는 연구들이 진행되어왔다. 특히, 문서를 요약하는 연구들은 문서에 존재하는 문장을 추출하는 방법과 요약문을 새롭게 생성하는 방법, 이렇게 크게 두 가지 방법으로 진행되었다. 이 연구에서는, 잠재 토픽 모델을 통하여 얻어낸 각 문장의 토픽 순열을 이용하여 문서를 대표하는 문장, 즉 요약문으로서 적합한 문장들을 추출하는 새로운 기법을 소개한다. 특히, 잠재 토픽 모델이 일반적으로 가지고 있는 속성인 토픽 순열의 교환성(exchangeability)을 배제하고 토픽의 순열을 이용하여 요약문을 추출해내므로 이 기법을 통하여 문서 혹은 문장의 구조를 반영한 요약문을 만들 수 있다.

사전 학습 언어 모델을 이용한 한국어 문서 추출 요약 비교 분석 (A Comparative Study on the Korean Text Extractive Summarization using Pre-trained Language Model)

  • 조영래;백광현;박민지;박병훈;신수연
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.518-521
    • /
    • 2023
  • 오늘날 과도한 정보의 양 속에서 디지털 문서 내 중요한 정보를 효율적으로 획득하는 것은 비용 효율의 측면에서 중요한 요구사항이 되었다. 문서 요약은 자연어 처리의 한 분야로서 원본 문서의 핵심적인 정보를 유지하는 동시에 중요 문장을 추출 또는 생성하는 작업이다. 이 중 추출요약은 정보의 손실 및 잘못된 정보 생성의 가능성을 줄이고 요약 가능하다. 그러나 여러 토크나이저와 임베딩 모델 중 적절한 활용을 위한 비교가 미진한 상황이다. 본 논문에서는 한국어 사전학습된 추출 요약 언어 모델들을 선정하고 추가 데이터셋으로 학습하고 성능 평가를 실시하여 그 결과를 비교 분석하였다.

딥러닝과 Maximal Marginal Relevance를 이용한 2단계 문서 요약 (Two-step Document Summarization using Deep Learning and Maximal Marginal Relevance)

  • 전재원;황현선;이창기
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.297-300
    • /
    • 2019
  • 문서 요약은 길이가 긴 원본 문서의 의미는 유지한 채 원본보다 짧은 문서나 문장을 생성하는 자연어 처리 태스크이다. 본 논문에서는 Maximal Marginal Relevance(MMR)를 이용한 sequence-to-sequence 문장 추출 모델을 이용하여 의미가 중복되는 문장을 최소화하는 문장을 추출하고 추출된 문장을 sequence-to-sequence 모델을 통해 요약문을 생성하는 2단계 문서 요약 모델을 제안한다. 실험 결과 MMR을 활용하지 않았던 기존의 방법론보다 Rouge 성능이 향상되었다.

  • PDF

단어공기정보를 이용한 자동화 문서 요약 (World Co-occurrence based Automatic Text Summarization)

  • 류동원;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 봄 학술발표논문집 Vol.27 No.1 (B)
    • /
    • pp.345-347
    • /
    • 2000
  • 본 연구는 문서를 구성하고 있는 각 단락들(paragraphs)간의 단어공기정보(world co-occurrence)를 이용해 이들간의 관계를 바탕으로 중요단락을 추출하여 문서의 요약을 한다. 이같은 접근법 문서요약의 성능은 단락들간의 정보추출방법과 추출된 정보에 의한 중요단락 선택방법에 크게 좌우된다. 본 논문에서는 중요단락에 대한 선택을 할 때 기존의 방법론에서 발생하는 요약문의 가독성(readability)을 높이면서 또한 성능의 향상도 꾀할 수 있는 방법론을 제시한다.

  • PDF

어휘의 동시 발생 빈도와 분포를 이용한 다중 주제 회의록 요약 (Multi-Topic Meeting Summarization using Lexical Co-occurrence Frequency and Distribution)

  • 이병수;이지형
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.13-16
    • /
    • 2015
  • 본 논문에서는 어휘의 동시 발생 (co-occurrence) 빈도와 분포를 이용한 회의록 요약방법을 제안한다. 회의록은 일반 문서와 달리 문서에 여러 세부적인 주제들이 나타나며, 잘못된 형식의 문장, 불필요한 잡담들을 포함하고 있기 때문에 이러한 특징들이 문서요약 과정에서 고려되어야 한다. 기존의 일반적인 문서요약 방법은 하나의 주제를 기반으로 문서 전체에서 가장 중요한 문장으로 요약하기 때문에 다중 주제 회의록 요약에는 적합하지 않다. 제안한 방법은 먼저 어휘의 동시 발생 (co-occurrence) 빈도를 이용하여 회의록 분할 (segmentation) 과정을 수행한다. 다음으로 주제의 구분에 따라 분할된 각 영역 (block)의 중요 단어 집합 생성, 중요 문장 추출 과정을 통해 회의록의 중요 문장들을 선별한다. 마지막으로 추출된 중요 문장들의 위치, 종속 관계를 고려하여 최종적으로 회의록을 요약한다. AMI meeting corpus를 대상으로 실험한 결과, 제안한 방법이 baseline 요약 방법들보다 요약 비율에 따른 평가 및 요약문의 세부 주제별 평가에서 우수한 요약 성능을 보임을 확인하였다.

  • PDF

의미적으로 확장된 문장 간 유사도를 이용한 한국어 텍스트 자동 요약 (Korean Text Automatic Summarization using Semantically Expanded Sentence Similarity)

  • 김희찬;이수원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.841-844
    • /
    • 2014
  • 텍스트 자동 요약은 수많은 텍스트 데이터를 처리함에 있어 중요한 연구 분야이다. 이중 추출요약은 현재 가장 많이 연구가 되고 있는 자동 요약 분야이다. 본 논문은 추출 요약의 선두 연구인 TextRank는 문장 간 유사도를 계산할 때 문장 내 단어 간의 의미적 유사성을 충분히 고려하지 못하였다. 본 연구에서는 의미적 유사성을 고려한 새로운 단어 간 유사도 측정 방법을 제안한다. 추출된 문장 간 유사도는 그래프로 표현되며, TextRank의 랭킹 알고리즘과 동일한 랭킹 알고리즘을 사용하여 실험적으로 평가하였다. 그 결과 문장 간 유사성을 고려할 때 단어의 의미적 요소를 충분히 고려하여 정보의 유실을 최소화하여야 한다는 것을 실험 결과로써 확인할 수 있었다.

다중문서 요약에서 적응 기법을 이용한 문장 추출 (Sentence Extraction Using Adapting Method in Multi-Document Summarization)

  • 임정민;강인수;배재학;이종혁
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.12-19
    • /
    • 2004
  • 기존의 다중 문서요약은 전체 대상문서에 대해서 한번에 요약문을 생산하지만, 본 논문은 요약 대상문서 집합에서 핵심내용을 갖는 문서를 기본 문서로 선택, 임시 요약문장을 추출하고 대상문서 집합에서 순차적으로 문서를 입력받아 중요문장을 추출, 이전에 구축된 요약문장과 현재 추출된 문장을 비교하면서 요약에 필요한 문장을 선택하는 적응 기법을 제안한다. 제안한 방법으로 구현한 시스템은 NTCIR TSC 3에서 사용된 29개의 다중 문서집합을 통해서 성능을 평가하였다. 적응 기법 시스템은 TSC3의 baseline시스템인 Lead 방법보다는 높은 성능을 나타냈지만, TSC 3에 참가한 시스템들과의 비교에서는 월등한 성능 우위를 나타내지 못했다.

  • PDF