• Title/Summary/Keyword: 추체

Search Result 125, Processing Time 0.026 seconds

Chondrosarcoma of Thoracic Spine - A case report - (제 12 흉추체에 발생한 일차적 연골 육종 (증례 보고))

  • Rhee, Seung-Koo;Kim, Ki-Won;Kim, Jeong-Ho
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.2
    • /
    • pp.131-136
    • /
    • 1997
  • Although chondrosarcoma is a common primary malignant bone tumor, its occurrence in the spine is very rare. It is also well known that even after complete removal of chondrosarcoma in bone, not a few recurrence is possible. Surgical cure of a spinal chondrosarcoma is even more difficult because total excision of chondrosarcoma is usually impossible in the spine. No patients with spinal chondrosarcoma surviving more than 18 years has been reported in literature. We are reporting one patient(32 year old housewife) with chondrosarcoma at the $12^{th}$ thoracic spine which was treated with complete corpectomy of the $12^{th}$ thoracic vertebral body and rib and cancellous bone graft fixed with plating. She was followed for more than 3 years without local recurrence or distant metastasis.

  • PDF

FEM Analysis of Lumbar Interbody Fusion using the Cage and Screw in Relation to Bone Mineral Density (골밀도 변화에 따른 cage와 나사를 이용한 추체간 유합술의 유한요소 해석)

  • Kim H. S.;Park J. H.
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.525-530
    • /
    • 2004
  • Three dimensional finite element models of lumbar interbody fusion using rage and screws were constructed for the simulation of stress distribution and maximum displacement. It is also performed to investigate the efforts of osteoporosis and the location of cage on the stress distribution. It is known from the results that the increase of the strength of trabecular bone causes to decrease the stress of cortical bone and to increase the stress of trabecular bone. And it is found that the trend of stress distribution is changed by the change of location of cage and proper location of cage enhances the rate of operational success.

A Study on Radiation Exposure Dose of Patients and Operator during Percutaneous Vertebroplasty (경피적 추체 성형술 시행 시 환자와 시술자의 방사선 피폭선량에 관한 연구)

  • Lee, Jae-Heon;Shin, Seong-gyu;Lee, Hyo-Yeong
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 2017
  • Percutaneous vertebroplasty (PVP) is increasingly used to treat osteoporotic vertebral fractures, myeloma and osteolytic vertebral metastases. The purpose of this study was to measure the absorbed radiation exposure dose and time during PVP and to assess the possibility of deterministic radiation effects to the operator and patient. The radiation dose and time measure by three pain physicians performed consecutive procedures using the twenty case PVP. Patient's dosimeter placed at the anteroposterior(AP) side was treatment of the vertebra body located in the upper level 2-3 and lateral(LAT) side was flank proximal to C-arm tube of back. Operator's dosimeter placed at the apron outside of upper sternum (thyroid), left chest, lower extremity and apron inside of left chest. Results: Radiation exposure times were $3.6{\pm}0.71min$. Measurements on the Patient radiation dose were AP $121.4{\pm}48.1{\mu}Sv$, LAT side $614.7{\pm}177.1{\mu}Sv$. Operator radiation dose were outside of the lead apron upper sternum $33.7{\pm}7.3{\mu}Sv$, outside of the lead apron chest $49.2{\pm}15.0{\mu}Sv$, outside of the lead apron lower extremity $12.8{\pm}3.8{\mu}Sv$ and inside of the lead apron chest $4.2{\pm}1.4{\mu}Sv$. To escape from the danger of radiation first long distance from the c-arm tube second exposure time reduced second lead apron used fluoroscopy during PVP is more safety patient and operation from the radiation exposure.

The Analysis of Color Vision Defects Mechanism for the Electric Circuits (전기적 회로에 의한 색각이상 mechanism 해석)

  • Park, Sang-An;Kim, Yong-Geun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.81-85
    • /
    • 2001
  • The color vision was composed of the wavelength absorption of three R. G. B cone photo-receptors and the r-g, y-b channel of an opponent process. The color vision defects mechanism for the electric circuit made up a photo cell, relay switch and transformer. This mechanism very well applied to the color vision defects mechanism owing to be y-b chromatic valence function in case of a cone R or G defects and to be r-g chromatic valence function in case of a cone B defects.

  • PDF

Changes of Psychopathology and Extrapyramidal Symptoms When Co-administering Fluoxetine and Haloperidol (Fluoxetine과 Haloperidol의 병합투여시 정신병리 및 추체외로 증상의 변화)

  • Lee, Min-Soo;Han, Chang-Su;Kim, Jae-Won;Won, Kyung-Sik;Kwak, Dong-Il
    • Korean Journal of Biological Psychiatry
    • /
    • v.4 no.1
    • /
    • pp.121-126
    • /
    • 1997
  • Objectives : The authors have intended to know the drug interaction of fluoxetine and haloperidol when coadministering two drugs to the chronic schizophrenics by assessing the changes of positive, negative symptoms and extrapyramidal symptoms. Method : We selected 38 patients, the chronic schizophrenics with no physical problems. they are randomly assigned to placebo group and drug group. And then, placebo or fluoxetine 20mg were administered to the subjects of each group during 8 week period. We have assessed their psychopatholgy and extrapyramidal symptoms using Positive and Negative Syndrome Scale(PANSS), Clinical Global Impression(CGI), Simpson-Angus Scale at 0, 2, 4, 6, 8 week during the period. Results : 38 patients have completed the study during 8 weeks. 1) PANSS, CGI : no significant difference between groups and no significant change according to the times. 2) Simpson-Angus Scale : no significant changes. Conclusion : When co-administering fluoxetine and haloperidol, there were no significant changes of psychopathology and extrapyramidal symptoms. These results suggest that it is safe to coadminister fluoxetine to schizophrenic patients with haloperidol treatmemt.

  • PDF

A Biomechanical Study on the Various Factors of Vertebroplasty Using Image Analysis and Finite Element Analysis (의료영상 분석과 유한요소법을 통한 추체 성형술의 다양한 인자들에 대한 생체 역학적 효과 분석)

  • 전봉재;권순영;이창섭;탁계래;이권용;이성재
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.171-182
    • /
    • 2004
  • This study investigates the biomechanical efficacies of vertebroplasty which is used to treat vertebral body fracture with bone cement augmentation for osteoporotic patients using image and finite element analysis. Simulated models were divided into two groups: (a) a vertebral body, (b) a functional spinal unit(FSU). For a vertebral body model, the maximum axial displacement was investigated under axial compression to evaluate the effect of structural integrity. The stiffness of each FE model simulated was normalized by the stiffness of intact model. In the case of FSU model, 3 types of compression fractures were formulated to assess the influence on spinal curvature changes. The FSU models were loaded under compressive pressure to calculate the change of spinal curvature. The results according to the various factors suggest that vertebroplasty has the biomechanical efficacy of the increment of structural reinforcement in a patient who has relatively high level of BMD and a patient with the amount of 15%, PMMA injection of the cancellous bone volume. The spinal curvatures after compression fracture simulation vary from 9$^{\circ}$ to 17$^{\circ}$ of kyphosis compared to that the spinal curvature of normal model was -2.8$^{\circ}$ of lordosis. These spinal curvature changes cause the severe spinal deformity under the same loading. As the degree of compressive fracture increases the spinal deformity also increases. The results indicate that vertebroplasty has the increasing effect of the structural integrity regardless of the amount of PMMA or BMD and the restoration of decreased vertebral body height may be an important factor when the compressive fracture caused the significant height loss of vertebral body.

Effects of Fusion Level for Scioliotic Spine Correction Simulation with Pedicle Screw and Rod Derotation Method (척추경 나사못 고정과 강봉 감염술을 이용한 척추 측만증 교정 해석시 유합 범위에 따른 교정 효과 분석)

  • 김영은;손창규;최형연;하정현;이춘기
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • In order to investigate the Post-operative changes in scoliotic spine according to selection of fusion level a mathematical finite element model of King-Moe type II scoliotics spine system was developed. By utilizing this finite element scoliosis model surgical correction simulation procedures of pedicle fixation and derotation were simulated. In consequence of the calculation by changing the fusion Levels, postoperative changes like Cobb angle, apical vertebrae axial rotation (AVAR), thoracic kyphosis, and rib hump were Qualitatively analyzed. In the analysis of operative kinematics, the decrease or Cobb angle was most prominent in distraction than in deroation. Applying the rod derotation only was not effective in decrease of Cobb angle but just caused increase of At AR and rib hump. From the operative simulation, co-action or distraction and translation during rod insertion has major impact on Cobb angle decrease and maintenance of kyphosis. With rod rotation, Cobb angle decrease was obtained, but combined increase of AVAR and rib hump was simulation observed as well. The case of most extended instrumentation range with 60o rod rotation produced double decrease of Cobb angle, but the increase of rib hump and AYAR occurred corresponding1y. The optimum selection of fusion level was proved as one level less than inflection position of the thoracic spine curvature.

Current Concepts of Degenerative Disc Disease -A Significance of Endplate- (퇴행성 추간판 질환의 최신 지견 -종판의 중요성-)

  • Soh, Jaewan;Jang, Hae-Dong;Shin, Byung-Joon
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.4
    • /
    • pp.283-293
    • /
    • 2021
  • Degenerative disc disease has traditionally been thought of as low back pain caused by changes in the nucleus pulposus and annulus fibrous, in recent studies, however, changes in the upper and lower endplates cause degeneration of the disc, resulting in mechanical pressure, inflammatory reactions and low back pain. Recently, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous were considered as a single unit, and the relationship was explained. Once the endplate is damaged, it eventually aggravates the degeneration of the bone marrow, nucleus pulposus, and annulus fibrosus. In this process, the compression force of the annulus fibrosus increases, and an inflammatory reaction occurs due to inflammatory mediators. Hence, the sinuvertebral nerves and the basivertebral nerves are stimulated to cause back pain. If these changes become chronic, degenerative changes such as Modic changes occur in the bone marrow in the vertebrae. Finally, in the case of degenerative intervertebral disc disease, the bone marrow of the vertebral body-endplate-nucleus pulposus and annulus fibrous need to be considered as a single unit. Therefore, when treating patients with chronic low back pain, it is necessary to consider the changes in the nucleus pulposus and annulus fibrosus and a lesion of the endplate.