• 제목/요약/키워드: 추천 플랫폼

검색결과 165건 처리시간 0.029초

비지도 학습 기반 초개인화 추천 서비스를 위한 메타데이터 추출의 중요성 고찰 (Consideration upon Importance of Metadata Extraction for a Hyper-Personalized Recommender System on Unsupervised Learning)

  • 백주련;고광호
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제65차 동계학술대회논문집 30권1호
    • /
    • pp.19-22
    • /
    • 2022
  • 서비스 관점에서 구축되는 추천 시스템의 성능은 얼마나 효율적인 추천 모델을 적용하여 심층적으로 설계되었는가에 좌우된다고도 볼 수 있다. 특히, 추천 시스템의 초개인화는 세계적인 추세로 1~2년 전부터 구글, 아마존, 알리바바 등의 데이터 플랫폼 강자들이 경쟁적으로 딥 러닝 기반의 알고리즘을 개발, 자신들의 추천 서비스에 적용하고 있다. 본 연구는 갈수록 고도화되는 추천 시스템으로 인해 발생하는 여러 문제들 중 사용자 또는 서비스 정보가 부족하여 계속적으로 발생하고 있는 Cold-start 문제와 추천할 서비스와 사용자는 지속적으로 늘어나지만 실제로 사용자가 소비하게 되는 서비스의 비율은 현저하게 감소하는 데이터 희소성 문제 (Sparsity Problem)에 대한 솔루션을 모색하는 알고리즘 관점에서 연구하고자 한다. 본 논문은 첫 단계로, 적용하는 메타데이터에 따라 추천 결과의 정확성이 얼마나 차이가 나는지를 보이고 딥러닝 비지도학습 방식을 메타데이터 선정 및 추출에 적용하여 실시간으로 변화하는 소비자의 실제 생활 패턴 및 니즈를 예측해야 하는 필요성에 대해서 기술하고자 한다.

  • PDF

클라우드 컴퓨팅에서 구축한 협업필터링 기반 웹툰 추천 시스템 (A Webtoon Recommendation System based on Collaborative Filtering in Cloud Computing Service)

  • 이건호;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.451-454
    • /
    • 2016
  • 최근 스마트폰의 보급률이 높아짐에 따라, 사용자들이 스마트폰을 사용하여 컨텐츠를 즐기는 시간이 많아졌다. 이후 모바일 웹에서 서비스되는 만화들이 연달아 대중들의 이목을 끌게 되어 네이버 웹툰, 다음 웹툰 등 웹툰 서비스 및 웹툰 플랫폼이 증가하고 있다. 또한 웹툰 데이터의 가치와 신뢰성도 점점 높아지고 있어, 영화 애니메이션 게임 등 콘텐츠 사업에 많은 데이터가 사용되고 있다. 따라서 본 논문에서는 나이, 성별, 선호 카테고리, 선호 웹툰 플랫폼 등과 같은 개인 성향 기반으로 협업 필터링 방법을 적용하고, 웹툰의 방대한 데이터를 효과적으로 관리하기 위해 클라우드 컴퓨팅 시스템인 AWS(Amazon Web Service)를 이용하여 개인 성향에 맞게 웹툰을 추천해주는 웹툰 추천 시스템을 제안한다.

빅 데이터를 활용한 애완동물 상품 추천 시스템 구현 (Implementation of a pet product recommendation system using big data)

  • 김삼택
    • 한국융합학회논문지
    • /
    • 제11권11호
    • /
    • pp.19-24
    • /
    • 2020
  • 최근, 애완동물의 급격한 증가로 애완동물의 건강상태 체크와 다양하게 수집된 데이터를 활용하여 사료 추천 등 통합적인 애완동물관련 개인화 상품 추천 서비스가 요구된다. 본 논문은 빅 데이터 기술을 활용하여 애완동물관련 데이터 수집, 전처리, 분석, 관리등 다양한 개인화서비스를 할 수 있는 상품 추천시스템을 구현한다. 먼저, 애완동물이 착용하고 있는 센서 정보와 고객의 구매 패턴, SNS 정보를 수집해 데이터베이스에 저장하고 통계적 분석을 활용하여 사료제작, 애완동물 건강관리 등 맞춤형 개인화 추천 서비스가 가능한 플랫폼을 구현한다. 본 플랫폼은 유사도가 분석될 상품과 상품정보에 대한 유사도 상품 정보를 출력하고 최종적으로 추천 분석한 결과를 출력하여 고객에게 정보를 제공 할 수 있다.

안드로이드 모바일 플랫폼에서 이미지 태그 추천을 위한 시스템 구현 (Implementation of a System for Image Tag Recommendation Using an Android Mobile Platform)

  • 엄원용;민현석;이시형;;노용만
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 추계학술발표대회
    • /
    • pp.609-612
    • /
    • 2010
  • 최근 스마트 폰을 이용한 사용자들이 생성하는 사진 데이터의 양이 급속히 증가하였다. 폭발적인 사진 데이터 양의 증가는 사용자가 원하는 사진에 대한 접근을 어렵게 하였다. 때문에 본 연구에서는 사진의 접근 및 관리의 효율을 높이기 위한 폭소노미를 통한 태그 추천 시스템을 안드로이드 모바일 플랫폼과 서버의 연계로 구현하였다. 구현된 애플리케이션은 25,000 장의 사진을 기반으로 하는 폭소노미를 통해 태그 추천을 하며, 태그 추천에 평균적으로 5.5 초의 시간이 걸렸다.

웹 기반형(Web-based) 플랫폼 노동자의 임금 결정요인: 이전 고용주에 의한 평가의 관점에서 (Determinants of Wage for Web-based Platform Workers: In perspective of evaluation by previous employers)

  • 임지선
    • 디지털융복합연구
    • /
    • 제20권4호
    • /
    • pp.1-14
    • /
    • 2022
  • 본 연구는 웹 기반형(web-based) 플랫폼 노동자의 임금 결정에 관한 연구이다. 이를 위해 2018년 9월 전 세계적 플랫폼 노동시장 중 하나인 Freelancer.com에서 웹 크롤링(web-crawling)한 총 3,575명의 구직자 정보를 사용하였으며, 전통적 노동시장에서 유의하였던 학력, 경력과 더불어 플랫폼 노동시장에서 새롭게 사용 가능해진 이전 고용주에 의한 평가가 플랫폼 노동자의 임금상승에 유의한 영향을 주는지 OLS 및 QR 분석방법을 사용하여 추정하였다. OLS 분석결과 플랫폼 노동자의 임금은 과거 유의하였던 학력, 경력뿐 아니라 이전 고용주에 의한 평가(리뷰 수)에 의해서도 영향을 받는 것으로 나타났다. 다만, QR 분석결과 플랫폼 노동자의 임금수준이 상승함에 따라 교육보다는 경력이 리뷰 수보다는 추천 수가 플랫폼 노동자의 임금상승에 더욱 유의미한 영향을 주는 것으로 나타났다.

머신러닝 추천모듈이 적용된 맞춤형 학습 플랫폼 효과성 탐색: 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도를 중심으로 (The effects on the personalized learning platform with machine learning recommendation modules: Focused on learning time, self-directed learning ability, attitudes toward mathematics, and mathematics achievement)

  • 박만구;임현정;김지영;이규하;김미경
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제59권4호
    • /
    • pp.373-387
    • /
    • 2020
  • 본 연구의 목적은 학습 빅데이터 분석을 통해 추천 알고리즘을 스스로 고도화하는 머신러닝 추천모듈이 적용된 개인 맞춤형 학습 플랫폼이 학생들의 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도에 미치는 영향과 이들 사이의 구조적 관계를 검증하는 것이다. 연구 결과 개인 맞춤형 학습은 학생들의 학습시간, 자기주도적 학습능력, 수학에 대한 태도, 수학학업성취도에 대해 긍정적인 영향을 미치고 있었다. 또한, 맞춤형 학습과 수학에 대한 태도와 수학학업성취도의 관계에서 학습시간과 자기주도적 학습능력의 매개효과가 유의하였다.

모바일 상황인식 추천맛집 서비스 개발 (Development of Mobile Context Awareness Restaurant Recommendation Services)

  • 류종민;홍창표;강경보;강동현;양두영;좌정우
    • 한국콘텐츠학회논문지
    • /
    • 제7권5호
    • /
    • pp.138-145
    • /
    • 2007
  • 이동통신망 고도화와 유비쿼터스 센서 네트워크 기술 개발에 따라 상황인지 기반 신규 서비스 모델이 개발되고 있다. 이동통신사업자는 셀 기반의 위치정보를 이용한 친구 찾기 서비스 GPS 위치정보를 이용한 텔레매틱스 서비스 등을 제공하고 있고 최근에는 셀 기반의 위치정보 서비스를 이용한 114 서비스를 제공하고 있다. 본 논문에서는 이동통신망에서 위치정보와 상용자 정보를 이용한 모바일 상황인지 맛집 추천 서비스를 위피 플랫폼을 이용하여 개발하였다. 개발된 모바일 상황인지 맛집 추천 서비스는 이동통신망의 LBS(Location Based Service) 플랫폼으로부터 사용자 위치정보, 유선 웹 서버로부터 계절, 시간, 기상 등의 상황정보, 데이터베이스에 저장된 개인 선호 정보 등을 이용하여 최적의 맛집을 추천한다. 개발된 맛집 추천 서비스는 관광 정보 시스템과 연동하여 텔레매틱스 핵심 서비스로 제공할 수 있다.

인공지능 맞춤 추천서비스 기반 온라인 동영상(OTT) 콘텐츠 제작 기술 비교 (Comparison of online video(OTT) content production technology based on artificial intelligence customized recommendation service)

  • 전상훈;신승중
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권3호
    • /
    • pp.99-105
    • /
    • 2021
  • 넥플릭스,유튜브로 대표되는 OTT 동영상 제작 서비스에 인공지능으로 콘텐츠를 개인별 맞춤식 추천 시스템은 보편화 되었다. 유튜브의 개인별 맞춤 추천서비스 시스템은 두 개의 신경망으로 구성되는데 신경망 하나는 추천 후보생성 모델이고 다른 하나는 순위평가 네트워크로 구성된다. Netflix의 동영상 추천 시스템은 두 개 데이터 분류 시스템으로 구성되어 있으며 콘텐츠 기반 필터링과 협업 필터링으로 나누어진다. 코로나 펜데믹으로 온라인 플랫폼 주도의 콘텐츠 제작이 활성화 되면서 인공지능을 활용한 가상 인플루언서 분야가 부각되고 있다. 가상인플루언서는 GAN(Generative Adversarial Networks) 인공지능으로 제작되는데 성격이 다른 두 시스템이 서로 경쟁하는 방식으로 학습이 반복되는 비교사(Unsupervised) 학습 알고리즘이다. 이 연구는 AI 개인별 추천 기반 플랫폼과 가상인플루언서(메타버스)가 향후 OTT의 핵심콘텐츠로의 발전 가능성도 연구해 보았다.

도서 추천을 위한 임의 저자 도서에 대한 시계열 분석 시각화 (Implementation of Time Series Analysis and Visualization about Author's Books for Book Recommendation)

  • 김서희;정광철;이원진;김승훈
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제51차 동계학술대회논문집 23권1호
    • /
    • pp.23-26
    • /
    • 2015
  • 도서 정보 양이 급증하면서 사용자 성향과 선호도에 맞는 정보를 추천해주는 서비스의 중요성이 높아지고 있으며, 이와 관련하여 도서를 추천해주는 플랫폼 연구가 활발하게 진행되고 있다. 독자에게 성향과 선호도에 맞는 추천을 해주기 위해서는 사용자, 도서, 저자 등을 대상으로 하는 분석이 필요하며, 분석된 정보를 사용자에게 직관적으로 제공해주는 것이 필요하다. 따라서 본 논문에서는 저자에 대한 도서 정보를 시계열적으로 분석하고, 분석된 결과를 사용자에게 직관적으로 제공하는 시각화 방법을 제안한다. 제안한 방법은 저자의 도서를 시계열 방식으로 분석하고, 이를 시간 시각화와 레이더차트를 사용하여 도서정보를 제공한다. 또한 시간 시각화와 레이더 차트를 통해 두 저자의 도서 일대기와 분류의 변화를 직관적으로 확인할 수 있다.

  • PDF

선호도 전이 확률을 이용한 멀티미디어 컨텐츠 추천 시스템 (A Multimedia Contents Recommendation System using Preference Transition Probability)

  • 박성준;강상길;김영국
    • 한국지능시스템학회논문지
    • /
    • 제16권2호
    • /
    • pp.164-171
    • /
    • 2006
  • 최근에 서비스되기 시작한 디지털 멀티미디어 방송은 다양한 종류의 수많은 컨텐츠를 제공하기 때문에 고객은 때로 자신이 선호하는 컨텐츠를 찾는데 많은 시간을 소비한다. 심지어는 선호 컨텐츠를 찾는 동안 이미 방송이 끝날 수도 있다. 이와 같은 문제를 해결하기 위해서는 고객이 필요로 하는 최소 정보만을 추천하기 위한 방법이 필요하다. 본 논문에서는 고객이 시청한 컨텐츠 선호도 전이 확률을 이용하여 고객이 선호하는 컨텐츠를 미리 예측하여 추천하기 위한 알고리즘과 시스템을 제안한다. 제안하는 시스템은 클라이언트 관리자 에이전트, 모니터링 에이전트, 러닝 에이전트, 그리고 추천 에이전트 모듈로 구성된다. 클라이언트 관리자 에이전트는 다른 모듈과 상호 작용을 하면서 조정자 역할을 한다. 모니터링 에이전트는 컨텐츠에 대한 고객의 선호도를 분석하기 위해 고객이 이용했던 usage history 데이터를 수집하기 위한 에이전트이다. 러닝 에이전트는 고객으로부터 수집된 usage history 데이터를 정제하여 시간 변화에 따른 상태 전이 행렬로 모델링하기 위한 에이전트이다. 추천 에이전트는 고객의 상태 전이 행렬로 구성된 모델링 데이터에 본 논문에서 제안하는 선호도 전이 확률 모델을 이용하여 고객이 바로 다음에 선호하게 될 컨텐츠를 추천하기 위한 에이전트이다. 추천 에이전트 모듈에서 컨텐츠에 대한 고객의 선호도 전이 확률을 이용하는 추천 알고리즘을 제안한다. 제안하는 추천 시스템은 무선 인터넷 표준 플랫폼인 WIPI(Wireless Internet Platform for Interoperability) 플랫폼에서 프로토타입 시스템을 설계, 구현하였으며, 실험결과 제안된 선호도 전이 확률 모델의 추천 정확도가 전형적인 방법에 비해 효과적임을 보인다.