• 제목/요약/키워드: 추천 플랫폼

검색결과 165건 처리시간 0.025초

커뮤니케이션 플랫폼의 상호작용이 동일시와 추천 의도에 미치는 영향 (Research on the Influence of Interaction, Identification and Recommendation of Entertainment Communication Platform)

  • 조이단;최명길
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제15권6호
    • /
    • pp.23-33
    • /
    • 2021
  • 코로나19의 영향이 장기화되면서 오프라인 활동은 중단되었고 온라인 소통이 더욱 큰 비중을 차지하게 되었다. 한류와 인터넷 정보 기술의 비약적인 발전과 함께 다양한 엔터테인먼트 커뮤니케이션 플랫폼이 탄생했다. 팬들은 플랫폼을 통해 스타 및 다른 팬들과 소통하고 정보를 공유할 수 있게 되었다. 이러한 방식은 엔터테인먼트 커뮤니케이션 플랫폼에 대한 사용자의 가치 지각을 향상하고 공감을 자아내며, 플랫폼 추천 의도를 강화할 수 있다. 본 연구는 설문조사를 통해 엔터테인먼트 커뮤니케이션 플랫폼 내 사용자 간의 상호작용, 동일시와 추천 의도의 영향에 대해 실증분석을 실시하였다. 연구 결과는 다음과 같다. 첫째, 팬과 콘텐츠 상호작용은 심리 동일시와 행위 동일시에 긍정적인 영향을 미치는 것으로 나타났다. 둘째, 팬과 팬의 상호작용은 심리 동일시와 행위 동일시에 영향을 미치지 않는 것으로 나타났다. 셋째, 팬과 스타의 상호작용은 심리 동일시와 행위 동일시에 긍정적인 영향을 미치는 것으로 나타났다. 넷째, 심리 동일시와 행위 동일시는 커뮤니티 구성원의 추천 의도에 긍정적인 영향을 미치며, 행위 동일시는 심리 동일시와 추천 의도의 관계 중에서 부분 매개효과가 있는 것으로 나타났다. 이상의 분석 결과를 토대로 연구의 시사점과 한계점 및 향후 연구방향을 제시하였다.

Text-CNN 알고리즘 적용한 교육장터 플랫폼 기반 맞춤형 교육 컨텐츠 추천 메커니즘 개발 (Implementation of User Focused Education content Recommendation on Educational Marketplace Platform using Text-CNN)

  • 홍제성;박보경;곽제일;손현승;김영철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.965-967
    • /
    • 2019
  • 현재에는 다양한 교육 서비스, 자료, 기구가 개발되어 산재되어 있다. 그래서 학생에 맞는 맞춤형 교육으로 학생들의 적성, 진로에 관한 안목을 높이고, 교육의 질을 높이는 것이 중요하다. 기존의 교육 플랫폼은 교육 프로그램 및 교구 자료들이 여러 곳에 분산되어 있어 자료 선택이 어렵다. 이를 해결하기 위하여 맞춤형 교육 서비스 자료, 기구 등을 선생님(사용자)들에게 추천하는 메커니즘을 제안한다. 본 새로운 플랫폼에서 CNN 알고리즘을 통해 학급, 학생들에게 맞는 추천 컨텐츠를 제공한다. 이 메커니즘을 통해 자료 선택에 도움을 주어 교육의 질을 높이고자 한다.

과학 학술정보 서비스 플랫폼에서 개인화를 적용한 콘텐츠 추천 알고리즘 최적화를 통한 추천 결과의 성능 평가 (Performance Evaluation of Recommendation Results through Optimization on Content Recommendation Algorithm Applying Personalization in Scientific Information Service Platform)

  • 박성은;황윤영;윤정선
    • 한국콘텐츠학회논문지
    • /
    • 제17권11호
    • /
    • pp.183-191
    • /
    • 2017
  • 본 연구는 과학 학술정보 서비스 플랫폼 이용자의 정보 검색 편의성을 확보하고 적합한 정보의 획득에 소요되는 시간을 절약하기 위하여, 운영 중인 서비스 메뉴와 각 서비스 별 콘텐츠 정보를 제공하는 알고리즘 중 콘텐츠 추천 알고리즘을 최적화하고 그 결과를 비교평가 하는 것이다. 추천 정확도를 높이기 위해 이용자의 '전공' 항목을 기존 알고리즘에 추가하였으며, 기존 알고리즘과 최적화된 알고리즘을 통한 추천 결과의 성능평가를 수행하였다. 성능평가 결과 최적화된 알고리즘을 통해 이용자에게 제공되는 콘텐츠의 적합도가 21.2% 증가함을 파악하였다. 이용자에게 적합한 콘텐츠를 시스템에서 자동 도출하여 각 서비스 메뉴 별로 제공함으로써 정보 획득 시간을 단축하고, 연구정보로서 가치 있는 연구결과물의 생명주기를 연장할 수 있는 방안이라는 데 본 연구의 의의가 있다.

온라인 쇼핑 플랫폼의 개인화 추천 시스템이 소비자의 구매의도에 미치는 영향 (The Effect of the Personalized Recommendation System of Online Shopping Platform on Consumers' Purchase Intention)

  • 로영영;김종기
    • 경영정보학연구
    • /
    • 제25권4호
    • /
    • pp.67-87
    • /
    • 2023
  • 온라인 쇼핑 플랫폼은 개인화 추천 시스템을 활용하여 소비자의 개인 정보와 행동 데이터를 수집, 분석 및 마이닝을 통해 소비자에게 맞춤형 추천 서비스를 제공함으로써 소비자의 잠재적인 쇼핑 욕구를 자극한다. 본 연구는 S-O-R 모델을 기반으로 온라인 쇼핑 추천이 구매의도에 미치는 영양을 분석하기 위하여 시스템 품질인 다양성과 정확성, 정보 품질인 설득력과 완전성을 외부 자극으로 설정하고, 신뢰 및 지각된 가치에 따른 소비자의 심리상태 하 유기체로 설정하여 구매의도 간에 관계를 탐구하였다. 온라인 쇼핑 플랫폼을 이용하는 소비자를 대상으로 설문조사를 실시하였다. 분석결과는 개인화 추천 시스템의 품질과 정보 품질이 신뢰와 지각된 가치에 미치는 영향에 대한 가설이 모두 채택되었다. 신뢰가 시스템 품질, 정보 품질에 대한 구매의도와의 관계에서 매개역할을 확인하였으며 지각된 가치는 정보 품질에 대한 구매의도와의 관계에서 매개역할을 확인하였다. 추천 시스템이 제공하는 콘텐츠는 소비자 경험을 개선하고 소비자의 수용 정도를 높일 수 있는 방향으로 설계되어야 한다는 시사점을 도출하였다.

R 시스템에서 협업필터링과 개인화 요인을 사용한 스팀 비디오 게임 추천 시스템 (Steam Video Game Recommendation System using Collaborative Filtering and Personal propensity in R system)

  • 송민혁;신해란;박두순
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.56-59
    • /
    • 2019
  • 하루 평균 동시 접속자가 1,000만 명이 넘을 정도로 많은 사람이 사용하는 플랫폼은 드물다. 이러한 플랫폼 중에 스팀은 독보적인 존재이다. 스팀 내에는 수많은 게임이 있다. 그 수많은 게임 중 각 사용자에게 맞는 게임을 찾아내는 것은 매우 어렵다. 그래서 각 개인한테 맞는 게임을 추천해주는 것이 필요하다. 본 논문에서는 각 개인에 맞는 게임을 추천해주기 위하여 현재까지 가장 좋은 방법으로 알려진 협업 필터링 방법과 장르, 사용한 시간, 사용자 수를 고려하여 추천한다.

딥러닝을 활용한 개인 성향 분석에 맞춘 여행 추천시스템 (A travel recommendation system tailored to personal tendency analysis using deep learning)

  • 김솔비;조창석
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.504-506
    • /
    • 2023
  • 본 연구에서는 기존 여행지 추천의 플랫폼에 있어 개인의 취향에 맞는 여행지 추천이 어렵다는 점을 해결하고자, 비선형적 관계를 해결할 수 있는 NCF 심층신경망 추천시스템을 이용하여 개인의 성향에 따라 여행지를 추천해 주는 시스템을 제안하고 이를 평가한 결과를 보고한다.

지각된 넷플릭스 개인화 추천 서비스가 이용자 기대충족에 미치는 영향 (The Effects of Perceived Netflix Personalized Recommendation Service on Satisfying User Expectation)

  • 정승화
    • 한국콘텐츠학회논문지
    • /
    • 제22권7호
    • /
    • pp.164-175
    • /
    • 2022
  • OTT(Over The Top) 플랫폼은 개인화된 추천 서비스가 이용자들을 플랫폼에 더 오래 머물게 하고, 더 자주 방문하게 한다는 점에서 차별적 경쟁우위 특성을 강화하기 위해 노력하고 있다. 본 연구에서는 개인화된 추천 서비스의 특성을 추천 정확성과 추천 다양성, 추천 신기성의 3가지로 구분하고, 각 특성이 이용자가 추천 서비스에 대해 인지하는 유용성에 영향을 미치고, 기대충족으로 이어지는 연구모형을 제안하였다. 넷플릭스를 정기구독 결제하는 20, 30대 300명을 대상으로 온라인 설문조사를 진행한 결과, 추천 서비스의 정확성과 다양성, 신기성이 높았을 때 지각된 유용성이 높아짐을 확인하였다. 높은 지각된 유용성은 넷플릭스 이용 전후의 기대충족으로 이어진다는 점 역시 확인하였다. 도출된 연구 결과는 개인화된 추천 서비스 평가에서 이용자 경험 측면의 중요성과 추천 서비스 품질 개선 방안에 대한 시사점을 제공할 수 있을 것이다.

Design and Implementation of YouTube-based Educational Video Recommendation System

  • Kim, Young Kook;Kim, Myung Ho
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권5호
    • /
    • pp.37-45
    • /
    • 2022
  • 2020년 기준 대표적인 온라인 동영상 플랫폼인 유튜브에는 1분에 약 500시간의 동영상이 업로드되고 있다. 이에 업로드된 다수의 다양한 동영상을 통해 정보를 획득하는 사용자의 수가 늘고 있어 온라인 동영상 플랫폼들은 더 나은 추천 서비스를 제공하기 위해 노력하고 있다. 현재 사용되고 있는 추천 서비스는 사용자의 시청 기록을 기반으로 사용자에게 동영상을 추천하는데 이는 교육용 동영상과 같이 특정 목적 및 관심사를 다루는 동영상 추천에 좋은 방법이 아니다. 최근 추천 시스템은 사용자의 시청 기록뿐만 아니라 아이템의 콘텐츠 특징을 함께 활용한다. 본 논문에서는 유튜브를 기반으로 교육용 동영상 추천을 위한 교육용 동영상의 콘텐츠 특징을 추출하고, 이를 활용하는 추천 시스템을 설계하여 웹 애플리케이션으로 구현한다. 사용자들의 만족도를 조사하여 추천 시스템의 추천 성능의 만족도 85.36%, 편의성 만족도 87.80%를 보인다.

코스 코디네이터의 역할을 하는 WIPI 기반 과목 추천 시스템 (A Course Recommendation System as Course Coordinator based on WIPI)

  • 한용재;이영석;조정원;최병욱
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.973-976
    • /
    • 2004
  • IT 관련 기술의 발전은 'Any Time, Any Where, Any Service'를 사용자에게 제공할 수 있는 제반 여건을 마련하였다. 기존 웹 기반의 학사정보 시스템에서는 사용자의 이동성이 제한적이었고, 이를 해결하고자 한 무선 인터넷 기반의 학사정보 시스템은 클라이언트의 어플리케이션이 표준화된 환경에서 구축되지 않아서 모바일 기기의 플랫폼에 종속적이었다. 또한, 선택과목이 많은 학부제에서는 코스 코디네이터의 역할이 매우 중요하지만, 코스 코디네이터의 역할을 하는 지도교수와 학생 간의 커뮤니케이션의 부족으로 학생들은 도움을 받기 어렵다. 본 논문에서는 JAVA와 WIPI를 이용하여 플랫폼에 독립적이며 전공분야의 중요과목을 추천해 주는 과목 추천 시스템을 제안한다. 과목 추천 시스템은 학생들에게 수강과목에 대해 조언을 해 주는 코스 코디네이터의 역할을 대신할 수 있을 것이다. 또 학생들은 언제 어디서나 개인 휴대폰을 이용하여 수강신청에 관한 학사정보를 관리할 수 있고, 시스템의 추론에 따른 추천 과목을 수강하여 전공 분야에 대한 깊은 지식을 갖출 수 있을 것이다.

  • PDF

VOD 서비스 플랫폼에서 협력 필터링을 이용한 TV 프로그램 개인화 추천 (Personalized TV Program Recommendation in VOD Service Platform Using Collaborative Filtering)

  • 한성희;오연희;김희정
    • 방송공학회논문지
    • /
    • 제18권1호
    • /
    • pp.88-97
    • /
    • 2013
  • 개인화된 추천을 제공하기 위한 협력 필터링은 추천 시스템에서 성공적으로 활용되어 온 기법이다. 그러나 협력 필터링이 주로 연구 및 적용된 분야들은 사용자로부터의 명시적 피드백이 존재하는 독립된 아이템들을 추천하는 것에 초점을 두고 있다. VOD 서비스 플랫폼에서 개인화된 TV 프로그램을 추천하기 위해서는 해당 도메인의 특성과 제한들을 고려하는 것이 필요하다. 본 논문에서는 TV 프로그램의 시리즈 속성을 이용하여, 선호를 판단하기 힘든 비명시적 피드백인 회별 프로그램 시청기록을 명시적이고 지속적인 프로그램 선호도로 변환하는 방법을 고안하였다. 데이터 수집과 최종 추천은 회별 프로그램 단위로 이루어지면서 협력 필터링 처리 단위는 프로그램으로 변경되어 TV 프로그램 VOD 추천 환경에 가장 적당한 형태로 협력 필터링을 변형 적용하였다. 실험 결과는 고안된 추천 시스템이 단순히 협력 필터링을 적용했을 때보다 높은 정확도와 더 적은 계산량을 가지는 것을 보여준다. 도메인 특화된 이러한 변형은 추천 시스템의 알고리즘 모듈로 구성되어 기존에 알려진 다양한 협력 필터링 기법과 결합하여 사용될 수 있다.