코로나19의 영향이 장기화되면서 오프라인 활동은 중단되었고 온라인 소통이 더욱 큰 비중을 차지하게 되었다. 한류와 인터넷 정보 기술의 비약적인 발전과 함께 다양한 엔터테인먼트 커뮤니케이션 플랫폼이 탄생했다. 팬들은 플랫폼을 통해 스타 및 다른 팬들과 소통하고 정보를 공유할 수 있게 되었다. 이러한 방식은 엔터테인먼트 커뮤니케이션 플랫폼에 대한 사용자의 가치 지각을 향상하고 공감을 자아내며, 플랫폼 추천 의도를 강화할 수 있다. 본 연구는 설문조사를 통해 엔터테인먼트 커뮤니케이션 플랫폼 내 사용자 간의 상호작용, 동일시와 추천 의도의 영향에 대해 실증분석을 실시하였다. 연구 결과는 다음과 같다. 첫째, 팬과 콘텐츠 상호작용은 심리 동일시와 행위 동일시에 긍정적인 영향을 미치는 것으로 나타났다. 둘째, 팬과 팬의 상호작용은 심리 동일시와 행위 동일시에 영향을 미치지 않는 것으로 나타났다. 셋째, 팬과 스타의 상호작용은 심리 동일시와 행위 동일시에 긍정적인 영향을 미치는 것으로 나타났다. 넷째, 심리 동일시와 행위 동일시는 커뮤니티 구성원의 추천 의도에 긍정적인 영향을 미치며, 행위 동일시는 심리 동일시와 추천 의도의 관계 중에서 부분 매개효과가 있는 것으로 나타났다. 이상의 분석 결과를 토대로 연구의 시사점과 한계점 및 향후 연구방향을 제시하였다.
현재에는 다양한 교육 서비스, 자료, 기구가 개발되어 산재되어 있다. 그래서 학생에 맞는 맞춤형 교육으로 학생들의 적성, 진로에 관한 안목을 높이고, 교육의 질을 높이는 것이 중요하다. 기존의 교육 플랫폼은 교육 프로그램 및 교구 자료들이 여러 곳에 분산되어 있어 자료 선택이 어렵다. 이를 해결하기 위하여 맞춤형 교육 서비스 자료, 기구 등을 선생님(사용자)들에게 추천하는 메커니즘을 제안한다. 본 새로운 플랫폼에서 CNN 알고리즘을 통해 학급, 학생들에게 맞는 추천 컨텐츠를 제공한다. 이 메커니즘을 통해 자료 선택에 도움을 주어 교육의 질을 높이고자 한다.
본 연구는 과학 학술정보 서비스 플랫폼 이용자의 정보 검색 편의성을 확보하고 적합한 정보의 획득에 소요되는 시간을 절약하기 위하여, 운영 중인 서비스 메뉴와 각 서비스 별 콘텐츠 정보를 제공하는 알고리즘 중 콘텐츠 추천 알고리즘을 최적화하고 그 결과를 비교평가 하는 것이다. 추천 정확도를 높이기 위해 이용자의 '전공' 항목을 기존 알고리즘에 추가하였으며, 기존 알고리즘과 최적화된 알고리즘을 통한 추천 결과의 성능평가를 수행하였다. 성능평가 결과 최적화된 알고리즘을 통해 이용자에게 제공되는 콘텐츠의 적합도가 21.2% 증가함을 파악하였다. 이용자에게 적합한 콘텐츠를 시스템에서 자동 도출하여 각 서비스 메뉴 별로 제공함으로써 정보 획득 시간을 단축하고, 연구정보로서 가치 있는 연구결과물의 생명주기를 연장할 수 있는 방안이라는 데 본 연구의 의의가 있다.
온라인 쇼핑 플랫폼은 개인화 추천 시스템을 활용하여 소비자의 개인 정보와 행동 데이터를 수집, 분석 및 마이닝을 통해 소비자에게 맞춤형 추천 서비스를 제공함으로써 소비자의 잠재적인 쇼핑 욕구를 자극한다. 본 연구는 S-O-R 모델을 기반으로 온라인 쇼핑 추천이 구매의도에 미치는 영양을 분석하기 위하여 시스템 품질인 다양성과 정확성, 정보 품질인 설득력과 완전성을 외부 자극으로 설정하고, 신뢰 및 지각된 가치에 따른 소비자의 심리상태 하 유기체로 설정하여 구매의도 간에 관계를 탐구하였다. 온라인 쇼핑 플랫폼을 이용하는 소비자를 대상으로 설문조사를 실시하였다. 분석결과는 개인화 추천 시스템의 품질과 정보 품질이 신뢰와 지각된 가치에 미치는 영향에 대한 가설이 모두 채택되었다. 신뢰가 시스템 품질, 정보 품질에 대한 구매의도와의 관계에서 매개역할을 확인하였으며 지각된 가치는 정보 품질에 대한 구매의도와의 관계에서 매개역할을 확인하였다. 추천 시스템이 제공하는 콘텐츠는 소비자 경험을 개선하고 소비자의 수용 정도를 높일 수 있는 방향으로 설계되어야 한다는 시사점을 도출하였다.
하루 평균 동시 접속자가 1,000만 명이 넘을 정도로 많은 사람이 사용하는 플랫폼은 드물다. 이러한 플랫폼 중에 스팀은 독보적인 존재이다. 스팀 내에는 수많은 게임이 있다. 그 수많은 게임 중 각 사용자에게 맞는 게임을 찾아내는 것은 매우 어렵다. 그래서 각 개인한테 맞는 게임을 추천해주는 것이 필요하다. 본 논문에서는 각 개인에 맞는 게임을 추천해주기 위하여 현재까지 가장 좋은 방법으로 알려진 협업 필터링 방법과 장르, 사용한 시간, 사용자 수를 고려하여 추천한다.
OTT(Over The Top) 플랫폼은 개인화된 추천 서비스가 이용자들을 플랫폼에 더 오래 머물게 하고, 더 자주 방문하게 한다는 점에서 차별적 경쟁우위 특성을 강화하기 위해 노력하고 있다. 본 연구에서는 개인화된 추천 서비스의 특성을 추천 정확성과 추천 다양성, 추천 신기성의 3가지로 구분하고, 각 특성이 이용자가 추천 서비스에 대해 인지하는 유용성에 영향을 미치고, 기대충족으로 이어지는 연구모형을 제안하였다. 넷플릭스를 정기구독 결제하는 20, 30대 300명을 대상으로 온라인 설문조사를 진행한 결과, 추천 서비스의 정확성과 다양성, 신기성이 높았을 때 지각된 유용성이 높아짐을 확인하였다. 높은 지각된 유용성은 넷플릭스 이용 전후의 기대충족으로 이어진다는 점 역시 확인하였다. 도출된 연구 결과는 개인화된 추천 서비스 평가에서 이용자 경험 측면의 중요성과 추천 서비스 품질 개선 방안에 대한 시사점을 제공할 수 있을 것이다.
2020년 기준 대표적인 온라인 동영상 플랫폼인 유튜브에는 1분에 약 500시간의 동영상이 업로드되고 있다. 이에 업로드된 다수의 다양한 동영상을 통해 정보를 획득하는 사용자의 수가 늘고 있어 온라인 동영상 플랫폼들은 더 나은 추천 서비스를 제공하기 위해 노력하고 있다. 현재 사용되고 있는 추천 서비스는 사용자의 시청 기록을 기반으로 사용자에게 동영상을 추천하는데 이는 교육용 동영상과 같이 특정 목적 및 관심사를 다루는 동영상 추천에 좋은 방법이 아니다. 최근 추천 시스템은 사용자의 시청 기록뿐만 아니라 아이템의 콘텐츠 특징을 함께 활용한다. 본 논문에서는 유튜브를 기반으로 교육용 동영상 추천을 위한 교육용 동영상의 콘텐츠 특징을 추출하고, 이를 활용하는 추천 시스템을 설계하여 웹 애플리케이션으로 구현한다. 사용자들의 만족도를 조사하여 추천 시스템의 추천 성능의 만족도 85.36%, 편의성 만족도 87.80%를 보인다.
IT 관련 기술의 발전은 'Any Time, Any Where, Any Service'를 사용자에게 제공할 수 있는 제반 여건을 마련하였다. 기존 웹 기반의 학사정보 시스템에서는 사용자의 이동성이 제한적이었고, 이를 해결하고자 한 무선 인터넷 기반의 학사정보 시스템은 클라이언트의 어플리케이션이 표준화된 환경에서 구축되지 않아서 모바일 기기의 플랫폼에 종속적이었다. 또한, 선택과목이 많은 학부제에서는 코스 코디네이터의 역할이 매우 중요하지만, 코스 코디네이터의 역할을 하는 지도교수와 학생 간의 커뮤니케이션의 부족으로 학생들은 도움을 받기 어렵다. 본 논문에서는 JAVA와 WIPI를 이용하여 플랫폼에 독립적이며 전공분야의 중요과목을 추천해 주는 과목 추천 시스템을 제안한다. 과목 추천 시스템은 학생들에게 수강과목에 대해 조언을 해 주는 코스 코디네이터의 역할을 대신할 수 있을 것이다. 또 학생들은 언제 어디서나 개인 휴대폰을 이용하여 수강신청에 관한 학사정보를 관리할 수 있고, 시스템의 추론에 따른 추천 과목을 수강하여 전공 분야에 대한 깊은 지식을 갖출 수 있을 것이다.
개인화된 추천을 제공하기 위한 협력 필터링은 추천 시스템에서 성공적으로 활용되어 온 기법이다. 그러나 협력 필터링이 주로 연구 및 적용된 분야들은 사용자로부터의 명시적 피드백이 존재하는 독립된 아이템들을 추천하는 것에 초점을 두고 있다. VOD 서비스 플랫폼에서 개인화된 TV 프로그램을 추천하기 위해서는 해당 도메인의 특성과 제한들을 고려하는 것이 필요하다. 본 논문에서는 TV 프로그램의 시리즈 속성을 이용하여, 선호를 판단하기 힘든 비명시적 피드백인 회별 프로그램 시청기록을 명시적이고 지속적인 프로그램 선호도로 변환하는 방법을 고안하였다. 데이터 수집과 최종 추천은 회별 프로그램 단위로 이루어지면서 협력 필터링 처리 단위는 프로그램으로 변경되어 TV 프로그램 VOD 추천 환경에 가장 적당한 형태로 협력 필터링을 변형 적용하였다. 실험 결과는 고안된 추천 시스템이 단순히 협력 필터링을 적용했을 때보다 높은 정확도와 더 적은 계산량을 가지는 것을 보여준다. 도메인 특화된 이러한 변형은 추천 시스템의 알고리즘 모듈로 구성되어 기존에 알려진 다양한 협력 필터링 기법과 결합하여 사용될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.