최근 코로나바이러스로 인한 마스크 착용이 급증함에 따라 마스크 착용에 대응할 수 있는 기술의 중요성이 증가하고 있다. 얼굴 자세 추정 분야는 운전자 주의, 얼굴 정면화, 시선 감지 등의 다양한 활용성에도 불구하고 마스크 착용에 따른 성능 저하 문제를 해결할 수 있는 연구가 거의 수행되지 않았다. 본 논문은 마스크 착용 유무에 따른 얼굴 자세 추정의 성능 저하에 대한 분석을 토대로, 마스크가 없는 얼굴 이미지의 크기 및 자세를 분석하여 마스크 이미지를 합성할 수 있는 데이터 증강 기법을 제안한다. 제안하는 얼굴에 특화된 증강 기법을 활용한 학습은 마스크 착용 여부와 관계없이 얼굴 자세 추정 벤치마크 데이터 세트인 BIWI에서 강인한 성능을 보이며, 특정 모델에 국한되지 않기 때문에 다양한 얼굴 자세 추정 모델에 적용될 수 있다.
다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정한다.
다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정 한다.
본 논문에서는 시간-주파수 영역에서의 이산 마스킹을 이용하여 잡음환경 음성의 음성 명료도를 높이는 방법에 대해 다루고자 한다. 잡음이 섞여 있는 음성신호를 시간-주파수 영역으로 분해하여, 상대적으로 잡음이 많이 섞여 있는 시간-주파수 영역의 신호를 마스크 "0"을 할당하여 제거함으로써 음성명료도를 향상시킬 수 있다. 이러한 이산 마스크를 추정하기 위해서는 각 시간-주파수 영역에서 신호 대 잡음 비를 추정하여 문턱값과 비교해야 하는데, 본 논문에서는 학습 기반의 신호 대 잡음 비 추정방법을 사용하여 문턱값과 비교하여 이산 마스크를 추정한다. 신호 대 잡음 비와 비교하기 위한 문턱값은 모든 주파수 대역에 대해 동일한 값을 이용하는 고정 문턱값 외에도 주파수 대역에 따라 학습 데이터의 분포로부터 최적의 값을 사용하는 최적 문턱값을 제안한다. 제안된 이산 마스크 추정 방법은 잡음 환경 데이터에 적용한 후, 피험자에게 들려주어 음성 명료도를 측정한다.
에지 검출 방법은 Sobel, Prewitt, Roberts, Canny 에지 검출기 등이 있으며, 이러한 방법들은 임펄스 잡음에 훼손된 영상에서 에지 검출 특성이 미흡하다. 따라서 본 논문에서는 이러한 기존의 방법의 단점들을 개선하고 임펄스 잡음 환경에서 효과적으로 에지를 검출하기 위하여, $3{\times}3$ 마스크를 사용하여 중심 화소를 기준으로 한 $5{\times}5$ 마스크 내의 요소들에 대해 잡음을 판단하며, 그 여부에 따라 비잡음일 경우 그대로 처리하고 잡음일 경우 각 요소들의 인접 화소를 이용하여 추정 마스크를 구하여 에지를 검출하는 알고리즘을 제안하였다.
시간-주파수 영역에서의 이진 마스킹을 이용하여 잡음환경에서 잡음을 제거하여 음질을 향상하는 방법에 대해 논하고자 한다. 잡음이 섞여 있는 음성신호를 시간-주파수 영역으로 분해하여, 상대적으로 잡음이 많이 섞여 있는 시간-주파수 영역 (시간-주파수 유닛의 신호 대 잡음 비 (Signal-to-Noise Ratio: SNR)가 낮은 영역)의 신호에 마스크 "0"을 할당하여 제거함으로써 음성명료도를 향상시킬 수 있다. 이전의 연구에서는 가우시안 혼합 모델을 이용하여 마스크 "0"과 마스크 "1"을 분류하는 방법을 사용하였다. 각 주파수 밴드별로 수집된 데이터를 이용하여 가우시안 혼합 모델을 학습하고 테스트 데이터가 들어오면 현재의 시간-주파수 마스크가 "0"인지 "1"인지 판별하게 된다. 본 논문에서는 이러한 알고리즘에 주파수 영역에서의 종속성을 고려하여 추정된 마스크에 대해 후처리를 수행하는 알고리즘을 제안한다. 주파수 영역에서의 종속성에 관한 후처리는 비터비 (Viterbi) 알고리즘을 이용하며, 제안된 후처리 알고리즘을 적용하여 이진 마스크 추정 오차를 줄여 음성 명료도 향상을 기대할 수 있다.
본 논문에서는 잡음 환경에서 효과적인 음성 인식을 위해 마스크 기반의 음성 향상 기법을 개선한다. 마스크 기반의 음성 향상 기법에서는 심층 신경망을 기반으로 추정한 마스크를 잡음 오염 음성에 곱하여 향상된 음성을 얻는다. 마스크 추정 모델로 VoiceFilter(VF) 모델을 사용하고 추정된 마스크로 얻은 음성으로부터 잔여 잡음을 보다 확실히 제거하기 위해 Spectrogram Inpainting(SI)기법을 적용한다. 본 논문에서는 음성 향상 결과를 보다 개선하기 위해 마스크 추정을 위한 모델 학습 과정에 사용되는 조합된 손실함수를 제안한다. 음성 구간에 남아 있는 잡음을 보다 효과적으로 제거하기 위해 잡음 오염 음성에 마스크를 적용한 Triplet 손실함수의 Positive 부분을 컴포넌트 손실함수와 조합하여 사용한다. 실험 평가를 위한 잡음 음성 데이터는 TIMIT 데이터베이스와 NOISEX92, 배경음악 잡음을 다양한 Signal to Noise Ratio(SNR) 조건으로 합성하여 만들어 사용한다. 음성 향상의 성능 평가는 Source to Distortion Ratio(SDR), Perceptual Evaluation of Speech Quality(PESQ), Short-Time Objective Intelligibility(STOI)를 이용한다. 실험을 통해 평균 제곱 오차로만 훈련된 기존 시스템과 비교하여, VF 모델은 평균 제곱 오차로 훈련하고 SI 모델은 조합된 손실함수를 사용하였을 때 SDR은 평균 0.5dB, PESQ는 평균 0.06, STOI는 평균 0.002만큼 성능이 향상된 것을 확인했다.
현재 영상 시스템은 멀티미디어 기술의 발전으로 여러 분야에 활용되고 있다. 그러나 영상 데이터를 처리하는 과정에서 다양한 원인에 따라 잡음이 발생한다. 영상에 첨가되는 잡음은 발생 원인과 형태에 따라 여러 가지 종류가 있으며, salt and pepper 잡음이 대표적이다. 따라서 본 논문은 salt and pepper 잡음을 효과적으로 제거하기 위해, 추정 마스크를 이용한 메디안 필터 알고리즘을 제안하였다. 그리고 객관적인 판단을 위해, 기존의 방법들과 비교하였으며 판단의 기준으로 PSNR(peak signal to noise ratio)를 사용하였다.
본 연구는 미세먼지($PM_{10}$) 노출로 인한 건강위험을 줄이기 위한 소비재인 마스크 착용과 내구재인 공기청정기 사용에 따른 회피비용지출이 개인들의 주관적 위험인지 혹은 객관적 미세먼지 농도에 영향을 받는지 실증분석을 수행하고 미세먼지 위험감소에 대한 지불의사를 측정하였다. 회피비용함수 추정에 있어서 위험인지의 내생변수 가능성을 고려하여 도구변수접근법을 이용하여 2단계 추정방법과 결합추정방법을 시도하였다. 2017년 10월 후반에 실시된 웹설문조사에 참여한 1,224명의 분석표본을 대상으로 실증분석 결과, 마스크 착용 비용함수의 경우 위험인지변수의 외생성 가정을 기각할 수 없는 반면에, 공기청정기 사용 비용함수의 경우 내생성 편의를 고려할 경우 위험인지변수의 계수추정치가 6~7배 높은 것으로 나타났다. 주관적 위험인지 수준이 높을수록 마스크 착용이나 공기청정기 사용 비용지출도 높은 것으로 나타났으나 미세먼지 농도는 주관적 위험인지를 통해서 간접적으로 회피비용지출에 영향을 미치는 것으로 나타났다. 위험인지 평균에서 1단위 감소에 대한 한계지불의사는 마스크 착용의 경우 월평균 1,000원 그리고 공기청정기 사용의 경우 월평균 6,000원 정도로 측정되었다.
본 논문에서는 저해상도 영상들 사이의 움직임 정보를 사용하지 않고 서로 다른 형태의 열화영상들로부터 초해상도 영상을 복원하는 기술을 제안한다. 초해상도 영상 복원을 위해서 직사각형 조리개 마스크를 90도 회전하여 두 장의 영상을 취득하기 위한 렌즈시스템을 제안한다. 제안한 기술은 저해상도 영상에서 발생한 초점열화를 프레임마다 추정할 필요가 없고, 조리개 마스크 형태에 해당하는 초점열화만 추정하면 된다. 취득한 영상 간에는 평행 이동이 없기 때문에 영상정합이 필요하지 않다. 직사각형 조리개 마스크를 직교하여 취득한 두 장만의 영상으로 충분히 배타적인 정보를 얻을 수 있다. 따라서 저해상도 영상들 사이의 정합오류와 정합을 위한 계산량을 감소시킬 수 있기 때문에 고해상도 영상을 추정하기에 용이하다. 또한 기존의 카메라 렌즈 시스템에 조리개 마스크를 추가하여 적용할 수 있기 때문에 새로운 형태의 렌즈 시스템을 제작할 필요 없이 초해상도 영상을 복원할 수 있는 카메라 시스템으로 확장 가능하다. 마지막으로 본 논문에서 제안한 방향성 직사각형 열화를 사용한 초해상도 영상복원 기술의 성능을 검증하기 위해서 기존의 초해상도 영상복원 기술과 비교하였으며, 그 결과 해상도가 상당히 개선되었음을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.