• 제목/요약/키워드: 추론 알고리즘

Search Result 692, Processing Time 0.022 seconds

The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity (농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정시스템)

  • Park, Jinuk;Ahn, Heuihak;Lee, ByungKwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.521-530
    • /
    • 2018
  • This paper proposes "The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity" that collects weather information based on location supporting precision agriculture, predicts current crop condition by using the collected information and real time crop data, and notifies a farmer of the result. The system works as follows. The ICM(Information Collection Module) collects weather information based on location supporting precision agriculture. The DRCM(Deep learning based Risk Calculation Module) predicts whether the C, H, N and moisture content of soil are appropriate to grow specific crops according to current weather. The RNM(Risk Notification Module) notifies a farmer of the prediction result based on the DRCM. The proposed system improves the stability because it reduces the accuracy reduction rate as the amount of data increases and is apply the unsupervised learning to the analysis stage compared to the existing system. As a result, the simulation result shows that the ADS improved the success rate of data analysis by about 6%. And the ADS predicts the current crop growth condition accurately, prevents in advance the crop diseases in various environments, and provides the optimized condition for growing crops.

Modeling Nutrient Uptake of Cucumber Plant Based on EC and Nutrient Solution Uptake in Closed Perlite Culture (순환식 펄라이트재배에서 EC와 양액흡수량을 이용한 오이 양분흡수 모델링)

  • 김형준;우영회;김완순;조삼증;남윤일
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 2001.04b
    • /
    • pp.75-76
    • /
    • 2001
  • 순환식 펄라이트재배에서 배액 재사용을 위한 양분흡수 모델링을 작성하고자 EC 처리(1.5, 1.8, 2.1, 2.4, 2.7 dSㆍm-1)를 수행하였다. 생육 중기까지 EC 수준에 따른 양액흡수량은 차이가 없었지만 중기 이후 EC가 높을수록 흡수량이 감소되는 경항을 보였다(Fig. 1). NO$_3$-N, P 및 K의 흡수량은 생육기간 동안 처리간 차이를 유지하였는데 N과 K는 생육 중기 이후 일정 수준을 유지하였으나 P는 생육기간 동안 다소 증가되는 경향을 보였다. S의 흡수량은 생육 중기 이후 모든 처리에서 급격한 감소를 보였으며 생육 후기에는 처리간에 차이가 없었다(Fig. 2). 오이의 무기이온 흡수율에서와 같이 흡수량에서도 EC간 차이를 보여 EC를 무기이온 흡수량을 추정하는 요소로 이용할 수 있을 것으로 생각되었다. 무기이온 흡수량은 모든 EC 처리간에 생육 초기에는 차이를 보이지 않았으나 생육중기 이후에는 뚜렷한 차이를 보인 후 생육 후기의 높은 농도에서 그 차이가 다소 감소되는 경향을 보였다. 단위일사량에 따른 양액흡수량과 EC를 주된 변수로 한 오이의 이온 흡수량 예측 회귀식을 작성하였는데 모든 무기이온 흡수량 추정식의 상관계수는 S를 제외한 모든 이온에서 높게 나타났는데 특히 N, P, K 및 Ca에서 높았다. S이온에서의 상관계수는 0.47로 낮게 나타났으나 각 이온들의 회귀식에 대한 상관계수는 모두 1% 수준에서 유의성을 보여 위의 모델식을 순환식 양액재배에서 무기이온 추정식으로 사용이 가능할 것으로 생각되었다(Table 1). 이를 이용한 실측치와의 비교는 신뢰구간 1%내에서 높은 정의상관을 보여 실제적인 적용이 가능할 것으로 생각되었다(Fig 3)..ble 3D)를 바탕으로 MPEG-4 시스템의 특징들을 수용하여 구성되고 BIFS와 일대일로 대응된다. 반면에 XMT-0는 멀티미디어 문서를 웹문서로 표현하는 SMIL 2.0 을 그 기반으로 하였기에 MPEG-4 시스템의 특징보다는 컨텐츠를 저작하는 제작자의 초점에 맞추어 개발된 형태이다. XMT를 이용하여 컨텐츠를 저작하기 위해서는 사용자 인터페이스를 통해 입력되는 저작 정보들을 손쉽게 저장하고 조작할 수 있으며, 또한 XMT 파일 형태로 출력하기 위한 API 가 필요하다. 이에, 본 논문에서는 XMT 형태의 중간 자료형으로의 저장 및 조작을 위하여 XML 에서 표준 인터페이스로 사용하고 있는 DOM(Document Object Model)을 기반으로 하여 XMT 문법에 적합하게 API를 정의하였으며, 또한, XMT 파일을 생성하기 위한 API를 구현하였다. 본 논문에서 제공된 API는 객체기반 제작/편집 도구에 응용되어 다양한 멀티미디어 컨텐츠 제작에 사용되었다.x factorization (NMF), generative topographic mapping (GTM)의 구조와 학습 및 추론알고리즘을소개하고 이를 DNA칩 데이터 분석 평가 대회인 CAMDA-2000과 CAMDA-2001에서 사용된cancer diagnosis 문제와 gene-drug dependency analysis 문제에 적용한 결과를 살펴본다.0$\mu$M이 적당하며, 초기배발달을 유기할 때의 효과적인 cysteamine의 농도는 25~50$\mu$M인 것으로 판단된다.N)A(N)/N을 제시하였다(A(N)=N에 대한 A값). 위의 실험식을 사용하여 헝가리산 Zempleni 시료(15%

  • PDF

DeNERT: Named Entity Recognition Model using DQN and BERT

  • Yang, Sung-Min;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2020
  • In this paper, we propose a new structured entity recognition DeNERT model. Recently, the field of natural language processing has been actively researched using pre-trained language representation models with a large amount of corpus. In particular, the named entity recognition, which is one of the fields of natural language processing, uses a supervised learning method, which requires a large amount of training dataset and computation. Reinforcement learning is a method that learns through trial and error experience without initial data and is closer to the process of human learning than other machine learning methodologies and is not much applied to the field of natural language processing yet. It is often used in simulation environments such as Atari games and AlphaGo. BERT is a general-purpose language model developed by Google that is pre-trained on large corpus and computational quantities. Recently, it is a language model that shows high performance in the field of natural language processing research and shows high accuracy in many downstream tasks of natural language processing. In this paper, we propose a new named entity recognition DeNERT model using two deep learning models, DQN and BERT. The proposed model is trained by creating a learning environment of reinforcement learning model based on language expression which is the advantage of the general language model. The DeNERT model trained in this way is a faster inference time and higher performance model with a small amount of training dataset. Also, we validate the performance of our model's named entity recognition performance through experiments.

Comparative Analysis of CNN Deep Learning Model Performance Based on Quantification Application for High-Speed Marine Object Classification (고속 해상 객체 분류를 위한 양자화 적용 기반 CNN 딥러닝 모델 성능 비교 분석)

  • Lee, Seong-Ju;Lee, Hyo-Chan;Song, Hyun-Hak;Jeon, Ho-Seok;Im, Tae-ho
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.59-68
    • /
    • 2021
  • As artificial intelligence(AI) technologies, which have made rapid growth recently, began to be applied to the marine environment such as ships, there have been active researches on the application of CNN-based models specialized for digital videos. In E-Navigation service, which is combined with various technologies to detect floating objects of clash risk to reduce human errors and prevent fires inside ships, real-time processing is of huge importance. More functions added, however, mean a need for high-performance processes, which raises prices and poses a cost burden on shipowners. This study thus set out to propose a method capable of processing information at a high rate while maintaining the accuracy by applying Quantization techniques of a deep learning model. First, videos were pre-processed fit for the detection of floating matters in the sea to ensure the efficient transmission of video data to the deep learning entry. Secondly, the quantization technique, one of lightweight techniques for a deep learning model, was applied to reduce the usage rate of memory and increase the processing speed. Finally, the proposed deep learning model to which video pre-processing and quantization were applied was applied to various embedded boards to measure its accuracy and processing speed and test its performance. The proposed method was able to reduce the usage of memory capacity four times and improve the processing speed about four to five times while maintaining the old accuracy of recognition.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

A Study on the Prediction of the Construction Cost in Planning Stage of Local Housing Union Project (지역주택조합사업 기획단계의 공사비 예측에 관한 연구)

  • Lee, Jin-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.653-659
    • /
    • 2018
  • The accurate prediction of construction cost is a key factor in a project's success. However, it is hard to predict the construction costs in the planning stages rapidly and precisely when drawings, specifications, construction cost calculation statements are incomplete, among other factors. Accurate construction-cost prediction in the planning stage of a project is also important for project feasibility studies and successful completion. Therefore, various techniques have been applied to accurately predict construction costs at an early stage when project information is limited. There are many factors that affect the construction cost prediction. This paper presents a construction-cost prediction method as multiple regression model with seven construction factors as independent variables. The method was used to predict the construction cost of a local housing union project, and the error rate was 4.87%. It is not possible to compare the cost of the project at the planning stage of the local housing union project, but it has high prediction accuracy compared to the unit price of an existing unit area. It is likely to be applied in construction-cost calculation work and to contribute to the establishment of the budget for the local housing union project.

DECODE: A Novel Method of DEep CNN-based Object DEtection using Chirps Emission and Echo Signals in Indoor Environment (실내 환경에서 Chirp Emission과 Echo Signal을 이용한 심층신경망 기반 객체 감지 기법)

  • Nam, Hyunsoo;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.59-66
    • /
    • 2021
  • Humans mainly recognize surrounding objects using visual and auditory information among the five senses (sight, hearing, smell, touch, taste). Major research related to the latest object recognition mainly focuses on analysis using image sensor information. In this paper, after emitting various chirp audio signals into the observation space, collecting echoes through a 2-channel receiving sensor, converting them into spectral images, an object recognition experiment in 3D space was conducted using an image learning algorithm based on deep learning. Through this experiment, the experiment was conducted in a situation where there is noise and echo generated in a general indoor environment, not in the ideal condition of an anechoic room, and the object recognition through echo was able to estimate the position of the object with 83% accuracy. In addition, it was possible to obtain visual information through sound through learning of 3D sound by mapping the inference result to the observation space and the 3D sound spatial signal and outputting it as sound. This means that the use of various echo information along with image information is required for object recognition research, and it is thought that this technology can be used for augmented reality through 3D sound.

Design and Implementation of BNN based Human Identification and Motion Classification System Using CW Radar (연속파 레이다를 활용한 이진 신경망 기반 사람 식별 및 동작 분류 시스템 설계 및 구현)

  • Kim, Kyeong-min;Kim, Seong-jin;NamKoong, Ho-jung;Jung, Yun-ho
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.211-218
    • /
    • 2022
  • Continuous wave (CW) radar has the advantage of reliability and accuracy compared to other sensors such as camera and lidar. In addition, binarized neural network (BNN) has a characteristic that dramatically reduces memory usage and complexity compared to other deep learning networks. Therefore, this paper proposes binarized neural network based human identification and motion classification system using CW radar. After receiving a signal from CW radar, a spectrogram is generated through a short-time Fourier transform (STFT). Based on this spectrogram, we propose an algorithm that detects whether a person approaches a radar. Also, we designed an optimized BNN model that can support the accuracy of 90.0% for human identification and 98.3% for motion classification. In order to accelerate BNN operation, we designed BNN hardware accelerator on field programmable gate array (FPGA). The accelerator was implemented with 1,030 logics, 836 registers, and 334.904 Kbit block memory, and it was confirmed that the real-time operation was possible with a total calculation time of 6 ms from inference to transferring result.

Strawberry Pests and Diseases Detection Technique Optimized for Symptoms Using Deep Learning Algorithm (딥러닝을 이용한 병징에 최적화된 딸기 병충해 검출 기법)

  • Choi, Young-Woo;Kim, Na-eun;Paudel, Bhola;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • This study aimed to develop a service model that uses a deep learning algorithm for detecting diseases and pests in strawberries through image data. In addition, the pest detection performance of deep learning models was further improved by proposing segmented image data sets specialized in disease and pest symptoms. The CNN-based YOLO deep learning model was selected to enhance the existing R-CNN-based model's slow learning speed and inference speed. A general image data set and a proposed segmented image dataset was prepared to train the pest and disease detection model. When the deep learning model was trained with the general training data set, the pest detection rate was 81.35%, and the pest detection reliability was 73.35%. On the other hand, when the deep learning model was trained with the segmented image dataset, the pest detection rate increased to 91.93%, and detection reliability was increased to 83.41%. This study concludes with the possibility of improving the performance of the deep learning model by using a segmented image dataset instead of a general image dataset.

Time Series Data Analysis and Prediction System Using PCA (주성분 분석 기법을 활용한 시계열 데이터 분석 및 예측 시스템)

  • Jin, Young-Hoon;Ji, Se-Hyun;Han, Kun-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.99-107
    • /
    • 2021
  • We live in a myriad of data. Various data are created in all situations in which we work, and we discover the meaning of data through big data technology. Many efforts are underway to find meaningful data. This paper introduces an analysis technique that enables humans to make better choices through the trend and prediction of time series data as a principal component analysis technique. Principal component analysis constructs covariance through the input data and presents eigenvectors and eigenvalues that can infer the direction of the data. The proposed method computes a reference axis in a time series data set having a similar directionality. It predicts the directionality of data in the next section through the angle between the directionality of each time series data constituting the data set and the reference axis. In this paper, we compare and verify the accuracy of the proposed algorithm with LSTM (Long Short-Term Memory) through cryptocurrency trends. As a result of comparative verification, the proposed method recorded relatively few transactions and high returns(112%) compared to LSTM in data with high volatility. It can mean that the signal was analyzed and predicted relatively accurately, and it is expected that better results can be derived through a more accurate threshold setting.